一、前言 
线性代数中的“单位矩阵($\boldsymbol{E}$)”是一个非常特别的矩阵,这个矩阵非常简单,以至于可以用来记录初等变换的过程。
在本文中,「荒原之梦考研数学」就给同学们讲解一下单位矩阵的这一作用。
继续阅读“单位矩阵可以用来记录初等变换”线性代数中的“单位矩阵($\boldsymbol{E}$)”是一个非常特别的矩阵,这个矩阵非常简单,以至于可以用来记录初等变换的过程。
在本文中,「荒原之梦考研数学」就给同学们讲解一下单位矩阵的这一作用。
继续阅读“单位矩阵可以用来记录初等变换”在线性代数中,我们会遇到关于单位矩阵 $\boldsymbol{E}$ 的如下写法:
$$
\begin{aligned}
\boldsymbol{E}_{12} \quad \boldsymbol{E}_{23} \quad \boldsymbol{E}_{31} \quad \cdots
\end{aligned}
$$
那么,上面这种写法表示什么意思呢?
在本文中,「荒原之梦考研数学」就给同学们详细讲解一下。
继续阅读“线性代数中的 E12, E23 表示什么意思?”如果两个二次型之间可以通过坐标变换相互转化,那么这两个二次型的系数矩阵之间具有什么关系呢?
在本文中,「荒原之梦考研数学」就给同学们详细讲解这一问题。
继续阅读“通过坐标变换联系起来的两个二次型的系数矩阵互为合同矩阵”已知,有 $3$ 阶矩阵:
$$
\boldsymbol{A} = \begin{bmatrix}
b & a & a \\
a & b & a \\
a & a & b
\end{bmatrix}
$$
若 $r \left( \boldsymbol {A}^{*} \right)$ $=$ $1$,则下列选项正确的是哪一个:
[A]. $a \neq b$ 且 $b + 2 a$ $\neq$ $0$
[B]. $a \neq b$ 且 $b + 2 a$ $=$ $0$
[C]. $a = b$ 或 $b + 2 a$ $\neq$ $0$
[D]. $a = b$ 或 $b + 2 a$ $=$ $0$
难度评级:
继续阅读“题目的答案就是题目的充分必要条件:答案既不能只是题目的充分条件,也不能是题目的必要条件”已知 $n$ 阶矩阵 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 满足:
$$
\begin{cases}
\boldsymbol{A} = \frac{1}{3} (\boldsymbol{B} + \boldsymbol{E}) \\ \\
\boldsymbol{A} ^{2} = \boldsymbol{A}
\end{cases}
$$
则:
$$
\boldsymbol{B} = ?
$$
难度评级:
继续阅读“借助二次方程求解未知矩阵”已知:
$$
\begin{aligned}
\boldsymbol{A} & = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 2 & 0 & 1
\end{bmatrix} \\ \\
\boldsymbol{B} & = \begin{bmatrix}
1 & 0 \\
1 & 2 \\
1 & 1 \\
0 & 1
\end{bmatrix}
\end{aligned}
$$
则:
$$
\boldsymbol{A B} = ?
$$
难度评级:
继续阅读“利用好分块矩阵的性质,可以节省计算步骤”$$
\begin{aligned}
& |\boldsymbol{K}| = \\ \\
& \begin{vmatrix}
1 & -2 & 5 & 0 & 0 & 0 \\
3 & 8 & 1 & 0 & 0 & 0 \\
5 & 0 & -3 & 2 & 1 & -1 \\
1 & 2 & 5 & 2 & 1 & -1 \\
7 & 3 & 5 & 9 & 2 & 0 \\
1 & 6 & 5 & -5 & 3 & 2 \\
\end{vmatrix} \\ \\
& = ?
\end{aligned}
$$
难度评级:
继续阅读“行列式中的“消消乐””我们知道,形如下面这样的行列式,被称之为“范德蒙行列式”:
$$
D _{ n } = \begin{vmatrix}
1 & 1 & 1 & \cdots & 1 \\
x _{ 1 } & x _{ 2 } & x _{ 3 } & \cdots & x _{ n } \\
x _{ 1 } ^ { 2 } & x _{ 2 } ^ { 2 } & x _{ 3 } ^ { 2 } & \cdots & x _{ n } ^ { 2 } \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x _{ 1 } ^ { n – 1 } & x _{ 2 } ^ { n – 1 } & x _{ 3 } ^ { n – 1 } & \cdots & x _{ n } ^ { n – 1 }
\end{vmatrix}
$$
上面这个行列式的计算结果为:
$$
D _{ n } = \prod _{ 1 \leqslant j < i \leqslant n } \left( x _{ i } – x _{ j } \right)
$$
但是,在大部分的考试中,特别是考研数学中,并不会直接给我们一个标准形式的范德蒙行列式,更多的是会给出一个看上去像是其他形式的行列式,需要我们经过一些转化,才能转变为范德蒙行列式的标准形式,进而使用范德蒙行列式的计算公式。
在本文中,荒原之梦考研数学将给出若干道可以转变为范德蒙行列式计算的“范德蒙变体行列式”,并分析什么情况下可以考虑将一个行列式向范德蒙行列式转换。
继续阅读“范德蒙行列式“变体”行列式的计算”已知,$\boldsymbol{A}$ 和 $\boldsymbol{B}$ 都是 $n$ 阶方阵,且:
$$
\boldsymbol{BA} = \boldsymbol{E}
$$
则:
$$
\boldsymbol{B} \left[ \boldsymbol{E} + \boldsymbol{A} \left( \boldsymbol{E} + 2 \boldsymbol{B} ^{\top} \boldsymbol{A} ^{\top} \right) ^{-1} \boldsymbol{B} \right] \boldsymbol{A} = ?
$$
难度评级:
继续阅读“矩阵乘法一般是不能交换的:除非他们相乘得单位矩阵”已知矩阵 $\boldsymbol{K}$ $=$ $\boldsymbol{A K}$ $+$ $\boldsymbol{B}$, 且:
$$
\begin{aligned}
\boldsymbol{A} & = \begin{bmatrix}
0 & 1 & 0 \\
– 1 & -1 & 0 \\
0 & 0 & 2
\end{bmatrix} \\ \\
\boldsymbol{B} & = \begin{bmatrix}
1 & – 1 \\
2 & 0 \\
3 & 1
\end{bmatrix}
\end{aligned}
$$
则 $\boldsymbol{K}$ $=$ $?$
难度评级:
继续阅读“矩阵起源于方程组,因此也可以借助方程组的思想解题”$$
\begin{vmatrix} \boldsymbol{A} \end{vmatrix} = \begin{vmatrix}
a & 0 & b & 0 \\
0 & c & 0 & d \\
e & 0 & f & 0 \\
0 & g & 0 & h
\end{vmatrix} = ?
$$
难度评级:
继续阅读“如何确定行列式展开式中有效项的个数?”已知 $\boldsymbol{A} ^ { – 1 } = \left[ \begin{array} { c c c } 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{array} \right]$, 则:
$$
\begin{aligned}
\left( 3 \boldsymbol{A} ^ {*} \right) ^ { – 1 } & = ? \\
\left( 2 \boldsymbol {A} \right) ^ {*} & = ?
\end{aligned}
$$
难度评级:
继续阅读“看准题目所给条件,可以降低发生低级错误的可能性”在荒原之梦考研数学的《行列式的定义式(计算公式)该怎么理解?》这篇文章中,我们理解了如下这个行列式的计算公式中每一项的具体含义:
$$
\left|\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{m}\end{matrix}\right| =
\textcolor{yellow}{\sum _{j_{1} j_{2} \cdots j_{n}}} \textcolor{springgreen}{\left(−1\right)^{\tau \left(j_{1}j_{2} \cdots j_{n}\right)}} \textcolor{pink}{a_{1j_{1}}a_{2j_{2}} \cdots a_{n}}
$$
这个计算公式是一个标准的计算公式,因为其中表示行列式行数的 “$a_{1}$, $a_{2}$, $\cdots$, $a_{n}$” 是顺序排列的,那么,如果组成行列式展开式中的项的元素不是顺序排列相乘的,该怎么确定这个项的正负呢?
在本文中,荒原之梦考研数学就带大家一探究竟。
继续阅读“如何确定行列式展开计算公式中每一项的正负?”我们知道,$n$ 阶行列式的定义公式如下,同时,下面的公式也是计算 $n$ 阶行列式的通用公式:
$$
\left|\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{m} \end{matrix}\right| =
\textcolor{yellow}{\sum _{j_{1} j_{2} \cdots j_{n}}} \textcolor{springgreen}{\left(−1\right)^{\tau \left(j_{1}j_{2} \cdots j_{n}\right)}} \textcolor{pink}{a_{1j_{1}}a_{2j_{2}} \cdots a_{n}}
$$
那么,如何理解上面这个公式呢?
在本文中,荒原之梦考研数学将通过一点点的拆解剖析和例题,为同学们讲明白这个知识点。
继续阅读“行列式的定义式(计算公式)该怎么理解?”如果已知 $n$ 阶矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$, 以及 $n$ 阶零矩阵 $\boldsymbol{O}$, 且下式成立:
$$
\boldsymbol{AB} = \boldsymbol{O}
$$
那么,我们能判断出来有关矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 的哪些性质呢?
在本文中,荒原之梦考研数学将借助类似“俄罗斯方块”游戏中的元素,为同学们解释清楚这个问题。
继续阅读“用“俄罗斯方块”理解两矩阵相乘得零矩阵所蕴含的规律”