一、题目
已知 $\boldsymbol{A}$ 是四阶矩阵,$\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 是 $3$ 维线性无关的列向量,且有 $\boldsymbol{A} \boldsymbol{\alpha}_{1}=3 \boldsymbol{\alpha}_{1}, \boldsymbol{A} \boldsymbol{\alpha}_{2}=3 \boldsymbol{\alpha}_{2}$, $\boldsymbol{A} \boldsymbol{\alpha}_{3}=\mathbf{0}$, 又知 $\boldsymbol{P}^{-1} \boldsymbol{A P}=\left[\begin{array}{lll}3 & & \\ & 3 & \\ & & 0\end{array}\right]$, 则 $\boldsymbol{P}$ 可以是:
(A) $\left[\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, 2 \boldsymbol{\alpha}_{2},-3 \boldsymbol{\alpha}_{3}\right]$.
(B) $\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}\right]$.
(C) $\left[\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, 2 \boldsymbol{\alpha}_{1}+2 \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right]$.
(D) $\left[\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{1}\right]$.
难度评级:
继续阅读“相似对角化得到的对角矩阵主对角线上的元素就是特征值:做初等变换的矩阵 P 由与这些特征值依次对应的特征向量组成”