一、题目
已知 $y=y(x)$ 由 $\left\{\begin{array}{l}x=t^{3}+2 t, \\ \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-y=2 t\end{array}\right.$ 确定, 且 $\left.y\right|_{t=0}=1$, $\left.y^{\prime}\right|_{t=0}=-1$, 则曲线 $y=y(x)$ 在 $x=0$ 对应点处的曲率为 ($\quad$)
难度评级:
继续阅读“根据微分方程求解曲率”