连续函数在一点处的极限值就是该函数在该点处的函数值

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 在 $x=0$ 处连续,且 $\lim \limits_{x \rightarrow 0} \frac{f(x)}{\mathrm{e}^{x}-1}=2$, 则曲线 $y=f(x)$ 在 $x=0$ 处的法线方程是什么?

难度评级:

继续阅读“连续函数在一点处的极限值就是该函数在该点处的函数值”

计算定积分的神奇武器:区间再现公式(附若干例题)

一、前言 前言 - 荒原之梦

区间再现的强大之处在于,可以在【不改变】原有积分的【积分区间】的基础上,实现对被积函数的变形转化——这实际上就是利用原有被积函数的对称性,实现了【平移】。

有些时候,当我们对一个定积分题目无从下手时,试试区间再现,可能会有意想不到的效果。

总的来说,就是当我们要求解 $I = \int_{a}^{b} f(x) \mathrm{~d} x$ 时,通过变形将 $I$ 转换为 $\int_{a}^{b} g(x) \mathrm{~d} x$ 的形式,这样一来就有:

$$
I = \frac{1}{2} \int_{a}^{b} [ f(x) + g(x) ] \mathrm{~d} x
$$

继续阅读“计算定积分的神奇武器:区间再现公式(附若干例题)”

不能用公式也不能降阶的微分方程怎么计算?可以尝试进行变量分离——但如果变量分离不了呢?那就先对影响分离的部分作整体代换

一、题目题目 - 荒原之梦

已知,通过点 $(1,0)$ 的曲线 $y=y(x)$ 上每一点 $(x, y)$ 处切线的斜率等于 $1+\frac{y}{x}+\left(\frac{y}{x}\right)^{2}$, 则此曲线的方程是多少?

难度评级:

继续阅读“不能用公式也不能降阶的微分方程怎么计算?可以尝试进行变量分离——但如果变量分离不了呢?那就先对影响分离的部分作整体代换”

对于二阶常系数非齐次微分方程,当需要直接求函数解时可以用公式法,当需要用到中间的某些量时可以用常数变易法

一、题目题目 - 荒原之梦

已知,$a>0$ 是常数,连续函数 $f(x)$ 满足 $\lim \limits_{x \rightarrow+\infty} f(x)=b$, $y=y(x)$ 是微分方程 $y^{\prime \prime}+a y^{\prime}=f(x)$ $\quad (x \in[0,+\infty))$ 的解,则:

$$
\lim \limits_{x \rightarrow+\infty} y^{\prime}(x)=?
$$

$$
\lim \limits_{x \rightarrow+\infty} y^{\prime \prime}(x)=?
$$

难度评级:

继续阅读“对于二阶常系数非齐次微分方程,当需要直接求函数解时可以用公式法,当需要用到中间的某些量时可以用常数变易法”

以复合函数为桥梁,将“偏导”变为“导”,进而转化为微分方程

一、题目题目 - 荒原之梦

已知,$u$ $=$ $u\left(\sqrt{x^{2}+y^{2}}\right)$ 其中,$r=\sqrt{x^{2}+y^{2}}>0$ 有二阶连续的偏导数,且满足:

$$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-\frac{1}{x} \frac{\partial u}{\partial x}+u=x^{2}+y^{2}$$

则 $u\left(\sqrt{x^{2}+y^{2}}\right)=?$

难度评级:

继续阅读“以复合函数为桥梁,将“偏导”变为“导”,进而转化为微分方程”

无论什么样的二阶微分方程问题,先求解特征根总没错

一、题目题目 - 荒原之梦

已知,$y=y(x)$ 是二阶常系数线性微分方程 $y^{\prime \prime}+2 m y^{\prime}+n^{2} y=0$ 满足 $y(0)=a$ 与 $y^{\prime}(0)$ $=b$ 的特解,其中 $m>n>0$, 则 $\int_{0}^{+\infty} y(x) \mathrm{d} x=?$

难度评级:

继续阅读“无论什么样的二阶微分方程问题,先求解特征根总没错”

你知道怎么确定已知解的哪部分是非齐次微分方程的特解吗?

一、题目题目 - 荒原之梦

已知,$y_{1}=x \mathrm{e}^{x}+\mathrm{e}^{2 x}$, $y_{2}=x \mathrm{e}^{x}+\mathrm{e}^{-x}$, $y_{3}=x \mathrm{e}^{x}+\mathrm{e}^{2 x}-\mathrm{e}^{-x}$ 是某二阶线性非齐次微分方程的三个解,请确定此微分方程的形式。

难度评级:

继续阅读“你知道怎么确定已知解的哪部分是非齐次微分方程的特解吗?”

积分中值定理在二重积分中的应用

一、题目题目 - 荒原之梦

已知,$g(x)$ 有连续的导数, $g(0)=0$, $g^{\prime}(0)=a \neq 0$, $f(x, y)$ 在点 $(0,0)$ 的某邻域内连
续,则 $\lim \limits_{r \rightarrow 0^{+}} \frac{\iint_{x^{2}+y^{2} \leq r^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y}{g\left(r^{2}\right)}=?$

难度评级:

继续阅读“积分中值定理在二重积分中的应用”

当被积函数可以分离的时候,四重积分就是两个二重积分的积

一、题目题目 - 荒原之梦

已知,$f(x, y)$ 连续,且 $f(x, y)$ $=$ $x y+\iint_{D} f(u, v) \mathrm{d} u \mathrm{~d} v$, 其中 $D$ 是由 $y=0, y=x^{2}, x= 1$ 所围区域,则 $f(x, y)=?$

难度评级:

继续阅读“当被积函数可以分离的时候,四重积分就是两个二重积分的积”