复合函数求偏导的两种理解方式

一、题目题目 - 荒原之梦

已知 $u$ $=$ $\frac{x+y}{2}$, $v$ $=$ $\frac{x-y}{2}$, $w$ $=$ $z \mathrm{e}^{y}$, 取 $u$, $v$ 为新自变量,$w$ $=$ $w(u, v)$ 为新函数,请将下面的方程变换为以 $u$ 和 $v$ 为自变量的表示形式:

$$
\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2 } z}{\partial x \partial y} + \frac{\partial z}{\partial x} = z
$$

难度评级:

继续阅读“复合函数求偏导的两种理解方式”

每日箴言:人是因为有信念才成为了人

图解全概率公式

一、前言 前言 - 荒原之梦

全概率公公式的定义如下:

在本文中,「荒原之梦考研数学」就用 的方式,让同学们能够直观地理解全概率公式。

继续阅读“图解全概率公式”

每日箴言:梦无止境,行则将至

关于 $\arctan$ 的一个恒等式及其证明

一、前言 前言 - 荒原之梦

下面这个恒等式是考研数学中和高等数学中一个很重要的恒等式:

$$
\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}
$$

在本文中,荒原之梦考研数学将给同学们证明上面这个式子。

继续阅读“关于 $\arctan$ 的一个恒等式及其证明”

每日箴言:越泥泞的地方越适合开枝散叶,越崎岖的地方越能够抵御霜寒

计算含有“表述环路”的式子,首先需要“打破环路”

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 在闭区间 $[0, 1]$ 上连续,在开区间 $(0,1)$ 内可导,且:

$$
f(1)=k \int_0^{\frac{1}{k}} x \mathrm{e}^{1-x} f(x) \mathrm{~d} x
$$

其中常数 $k>1$.

请证明存在 $\xi \in(0,1)$, 使得下式成立:

$$
f^{\prime}(\xi)=\left(1-\frac{1}{\xi}\right) \cdot f(\xi)
$$

难度评级:

继续阅读“计算含有“表述环路”的式子,首先需要“打破环路””

每日箴言:相比于追求人生的上限,守住低限更重要

导数等于原函数的“平移”:这样的函数一般都由三角函数构成

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 二阶可导,且 $f ^{\prime} (x)$ $=$ $f(n-x)$, $f(0)$ $=$ $1$, 则:

$$
f(x) = ?
$$

难度评级:

继续阅读“导数等于原函数的“平移”:这样的函数一般都由三角函数构成”

每日箴言:根须是阳光在土地下的延伸

每日箴言:一棵草也有一棵草的坚韧,一座山也有一座山柔软

利用导数的定义求解式子的极限

一、题目题目 - 荒原之梦

请求解下面式子的极限:

$$
\begin{aligned}
K_{1} & = \lim_{ x \rightarrow a } \frac{ a^{x} – x^{a}}{x-a} \\ \\
K_{2} & = \lim_{ x \rightarrow a } \frac{ x^{x} – a^{a} }{x-a} \\ \\
K_{3} & = \lim_{x \rightarrow a } \frac{\tan x – \tan a}{ x^{a} – a^{a} }
\end{aligned}
$$

难度评级:

继续阅读“利用导数的定义求解式子的极限”

每日箴言:心怀感恩,就是善待自己


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress