题目
$x \rightarrow 0^{+}$时,下列无穷小阶数最高的是 ( )
$A.\int_{0}^{x}(e^{t^{2}}-1)dt$
$B.\int_{0}^{x}\ln(1+\sqrt{t^{3}})dt$
$C.\int_{0}^{\sin x}\sin t^{2}dt$
$D.\int_{0}^{1-\cos x}\sqrt{\sin ^{3} t}dt$
解析
A 项:
$\int_{0}^{x}(e^{t^{2}}-1)dt \sim \int_{0}^{x}t^{2}dt=\frac{1}{3}x^{3}.$
B 项:
$\int_{0}^{x}\ln(1+\sqrt{t^{3}})dt \sim \int_{0}^{x}t^{\frac{3}{2}}dt=\frac{2}{5}x^{\frac{5}{2}}.$
C 项:
$\int_{0}^{\sin x}\sin t^{2}dt \sim \int_{0}^{x}t^{2}dt=\frac{1}{3}x^{3}.$
D项:
$\int_{0}^{1-\cos x}\sqrt{\sin ^{3} t}dt \sim \int_{0}^{\frac{1}{2}x^{2}}t^{\frac{3}{2}}dt=\frac{2}{5}t^{\frac{5}{2}}|_{0}^{\frac{1}{2}x^{2}}=\frac{2}{5} \cdot (\frac{1}{2})^{\frac{5}{2}}\cdot x^{5}.$
综上可知,正确答案是:D.
EOF