一、题目
已知 $y$ $=$ $\sin 3x$, 求解 $y^{(n)}$.
难度评级:
二、解析 
解答本题需要首先掌握高阶导数的计算公式。
令 $u$ $=$ $3x$, 则:
$$
y = \sin u
$$
则:
$$
y^{\prime} = u^{\prime} (\sin u)^{\prime} \Rightarrow
$$
$$
y^{\prime} = 3 (\sin u)^{\prime}.
$$
Next
进而:
$$
y^{\prime \prime} = 3 u^{\prime} (\sin u)^{\prime \prime} \Rightarrow
$$
$$
y^{\prime \prime} = 3^{2} (\sin u)^{\prime \prime} \Rightarrow
$$
Next
进而:
$$
y^{\prime \prime \prime} = 3^{2} \cdot u^{\prime} (\sin u)^{\prime \prime \prime}.
$$
$$
y^{\prime \prime \prime} = 3^{3} (\sin u)^{\prime \prime \prime}.
$$
Next
于是,由归纳法可知:
$$
y^{(n)} = 3^{n} (\sin u)^{(n)} \Rightarrow
$$
$$
y^{(n)} = 3^{n} (\sin 3x)^{(n)} \Rightarrow
$$
$$
y^{(n)} = 3^{n} \sin (3x + n \cdot \frac{\pi
}{2}).
$$