可分离变量的方程(B028)

问题

已知:

$f_{1}(x)$ $g_{1}(y)$ $\mathrm{d} x$ $+$ $f_{2}(x)$ $g_{2}(y)$ $\mathrm{d} y$ $=$ $0$

是一个可分离变量的方程,则以下对该方程的变量分离结果,正确的是哪个?

选项

[A].   $\frac{f_{1}(x)}{f_{2}(x)}$ $\mathrm{d} x$ $+$ $\frac{g_{1}(y)}{g_{2}(y)}$ $\mathrm{d} y$ $=$ $0$

[B].   $\frac{f_{1}(x)}{f_{2}(x)}$ $\mathrm{d} x$ $+$ $\frac{g_{2}(y)}{g_{1}(y)}$ $\mathrm{d} y$ $=$ $1$

[C].   $\frac{f_{1}(x)}{f_{2}(x)}$ $\mathrm{d} x$ $-$ $\frac{g_{2}(y)}{g_{1}(y)}$ $\mathrm{d} y$ $=$ $0$

[D].   $\frac{f_{1}(x)}{f_{2}(x)}$ $\mathrm{d} x$ $+$ $\frac{g_{2}(y)}{g_{1}(y)}$ $\mathrm{d} y$ $=$ $0$



显示答案

两边同除 $g_{1}(y)$ $f_{2}(x)$ $\neq$ $0$, 得:

$\frac{f_{1}(x)}{f_{2}(x)}$ $\mathrm{d} x$ $+$ $\frac{g_{2}(y)}{g_{1}(y)}$ $\mathrm{d} y$ $=$ $0$.

之后,两边积分即可。