空间物体对质点的引力(B020)

问题

已知物体占有空间区域 $\Omega$, 在点 $(x, y, z)$ 处的密度为 $\rho(x, y, z)$, $\Omega$ 外有一质点 $M_{0}$ $($ $x_{0}$, $y_{0}$, $z_{0}$ $)$, 其质量为 $m_{0}$, 假定 $\rho(x, y, z)$ 在 $\Omega$ 上连续,则该物体对质点的引力为 $\boldsymbol{F}$ $=$ $\{$ $F_{x}$, $F_{y}$, $F_{z}$ $\}$, 则 $F_{x}$ $=$ $?$, $F_{y}$ $=$ $?$, $F_{z}$ $=$ $?$

其中,以下选项中的 $G$ 为引力常数.

选项

[A].   
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.


[B].   
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x+x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x+x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x+x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.


[C].   
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]}$ $\mathrm{~d} v$.


[D].   
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.



上一题 - 荒原之梦   答 案   下一题 - 荒原之梦


$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress