题目
编号:A2016206
已知函数 $f(x,y)=\frac{e^{x}}{x-y}$, 则 $?$
$$
A. f_{x}^{‘} – f_{y}^{‘} = 0
$$
$$
B. f_{x}^{‘} + f_{y}^{‘} = 0
$$
$$
C. f_{x}^{‘} – f_{y}^{‘} = f
$$
$$
D. f_{x}^{‘} + f_{y}^{‘} = f
$$
解析
本题主要考察求偏导,求偏导时要始终记住谁是变量谁是常数。
由题知:
$$
f_{x}^{‘} = \frac{e^{x}(x-y) – e^{x}}{(x-y)^{2}}.
$$
$$
f_{y}^{‘} = \frac{e^{x}}{(x-y)^{2}}.
$$
于是:
$$
f_{x}^{‘} + f_{y}^{‘} =
$$
$$
\frac{e^{x}(x-y)}{(x-y)^{2}} =
$$
$$
\frac{e^{x}}{x-y} = f(x,y).
$$
综上可知,正确选项为 $D$.
EOF