求解逆矩阵的三种方法

一、题目

设矩阵 $\boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$, $\boldsymbol{B} = \boldsymbol{A}^{2} – 3 \boldsymbol{A} + 2 \boldsymbol{E}$, 则 $\boldsymbol{B}^{-1} = \underline{\quad \quad \quad}$

二、解析

首先:

$$
\begin{aligned}
\textcolor{lightgreen}{ \boldsymbol{B} } & = \boldsymbol{A}^{2} – 3 \boldsymbol{A} + 2 \boldsymbol{E} \\ \\
& = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}^{2} – 3 \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \\
& = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} – 3 \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \\
& = \begin{bmatrix} -1 & -4 \\ 8 & 7 \end{bmatrix} + \begin{bmatrix} -3 & 3 \\ -6 & -9 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \\ \\
& = \textcolor{lightgreen}{ \begin{bmatrix} -2 & -1 \\ 2 & 0 \end{bmatrix} }
\end{aligned}
$$

根据《初等变换求逆法的形象理解:把单位矩阵 E 看作一张“白纸”或“原点”》这篇文章可知:

$$
\begin{bmatrix} \boldsymbol{A}, \boldsymbol{E} \end{bmatrix} \textcolor{lightgreen}{ \leadsto } \text{初等行变换} \textcolor{lightgreen}{ \leadsto } \begin{bmatrix} \boldsymbol{E}, \boldsymbol{A}^{-1} \end{bmatrix}
$$

因此,由 $\boldsymbol{B}$ $=$ $\begin{bmatrix} -2 & -1 \\ 2 & 0 \end{bmatrix}$ 可得:

$$
\begin{aligned}
& \left[\begin{array}
{cc|cc}
-2 & -1 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc|cc}
-2 & -1 & 1 & 0 \\
1 & 0 & 0 & \frac{1}{2}
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc|cc}
1 & 0 & 0 & \frac{1}{2} \\
-2 & -1 & 1 & 0
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc|cc}
1 & 0 & 0 & \frac{1}{2} \\
0 & -1 & 1 & 1
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc|cc}
1 & 0 & \textcolor{lightgreen}{0} & \textcolor{lightgreen}{\frac{1}{2}} \\
0 & 1 & \textcolor{lightgreen}{-1} & \textcolor{lightgreen}{-1}
\end{array}\right]
\end{aligned}
$$

于是可知:

$$
\textcolor{lightgreen}{ \boldsymbol{B}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & -1 \end{bmatrix} }
$$

根据《初等变换求逆法的形象理解:把单位矩阵 E 看作一张“白纸”或“原点”》这篇文章可知:

$$
\begin{bmatrix} \boldsymbol{A} \\ \boldsymbol{E} \end{bmatrix} \textcolor{lightgreen}{ \leadsto } \text{初等列变换} \textcolor{lightgreen}{ \leadsto } \begin{bmatrix} \boldsymbol{E} \\ \boldsymbol{A}^{-1} \end{bmatrix}
$$

因此,由 $\boldsymbol{B}$ $=$ $\begin{bmatrix} -2 & -1 \\ 2 & 0 \end{bmatrix}$ 可得:

$$
\begin{aligned}
& \left[\begin{array}
{cc}
-2 & -1 \\
2 & 0 \\
\hline
1 & 0 \\
0 & 1
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc}
-1 & -2 \\
0 & 2 \\
\hline
0 & 1 \\
1 & 0
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc}
1 & -2 \\
0 & 2 \\
\hline
0 & 1 \\
-1 & 0
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc}
1 & -1 \\
0 & 1 \\
\hline
0 & \frac{1}{2} \\
-1 & 0
\end{array}\right] \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \left[\begin{array}
{cc}
1 & 0 \\
0 & 1 \\
\hline
\textcolor{lightgreen}{0} & \textcolor{lightgreen}{\frac{1}{2}} \\
\textcolor{lightgreen}{-1} & \textcolor{lightgreen}{-1}
\end{array}\right]
\end{aligned}
$$

于是可知:

$$
\textcolor{lightgreen}{ \boldsymbol{B}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & -1 \end{bmatrix} }
$$

由于本题中的矩阵 $\boldsymbol{B}$ 是一个二阶矩阵,且:

$$
\boldsymbol{B}^{*} = |\boldsymbol{B}| \boldsymbol{B}^{-1} \textcolor{lightgreen}{ \leadsto } \boldsymbol{B}^{-1} = \frac{\boldsymbol{B}^{*}}{|\boldsymbol{B}|}
$$

因此,由《快速求解二阶矩阵的伴随矩阵》和 $\boldsymbol{B}$ $=$ $\begin{bmatrix} -2 & -1 \\ 2 & 0 \end{bmatrix}$ 可知:

$$
\boldsymbol{B}^{*} = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}
$$

于是:

$$
\textcolor{lightgreen}{ \boldsymbol{B}^{-1} } = \frac{\boldsymbol{B}^{*}}{|\boldsymbol{B}|} = \dfrac{1}{2} \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} = \textcolor{lightgreen}{ \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & -1 \end{bmatrix} }
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress