趋同和去分母是积分运算中常用的解题思路

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

解法一:趋同

$$
\begin{aligned}
I \\ \\
& = \int \frac{x \textcolor{orangered}{\tan x} }{\cos ^{ 4 } x} \mathrm{~d} x \\ \\
& = \int \frac{x}{\cos ^{ 4 } x} \cdot \textcolor{orangered}{ \frac{\sin x}{\cos x} } \mathrm{~d} x \\ \\
& = \int \frac { x } { \cos ^ { 5 } x } \cdot \textcolor{springgreen}{ \sin x \mathrm { ~ d } x } \\ \\
& = – \int \frac { x } { \cos ^ { 5 } x } \textcolor{springgreen}{ \mathrm { ~ d } \cos x }
\end{aligned}
$$

又因为,对分式求导会升高次幂,即:

$$
\textcolor{yellow}{ \left( \frac{1}{\cos ^{ 4 } x} \right) ^{\prime} _{\cos x} = \frac{- 4 \cos ^{ 3 } x}{\cos ^{ 8 } x} = -4 \cdot \frac{1}{\cos ^{ 5 } x} }
$$

所以:

$$
\begin{aligned}
I \\ \\
& = \frac { 1 } { 4 } \int x \mathrm { ~ d } \left( \frac { 1 } { \cos ^ { 4 } x } \right) \\ \\
& = \frac { x } { 4 \cos ^ { 4 } x } – \frac { 1 } { 4 } \int \frac { 1 } { \cos ^ { 4 } x } \mathrm { ~ d } x
\end{aligned}
$$

又因为:

$$
\textcolor{yellow}{
\begin{aligned}
\frac{1}{\cos ^{4} x} \\ \\
& = \frac{1}{\cos ^{2} x} \cdot \frac{1}{\cos ^{2} x} \\ \\
& = \frac{1}{\cos ^{2} x} \mathrm{~d} (\tan x) \\ \\
& = \frac{\sin ^{2} x + \cos ^{2} x}{\cos ^{2} x} \mathrm{~d} (\tan x) \\ \\
& = \left( \tan ^{2} x + 1 \right) \mathrm{~d} ( \tan x)
\end{aligned}
}
$$

所以:

$$
\begin{aligned}
I \\ \\
& = \frac { x } { 4 \cos ^ { 4 } x } – \frac { 1 } { 4 } \int \left( \tan ^ { 2 } x + 1 \right) \mathrm { d } \tan x \\ \\
& = \frac { x } { 4 \cos ^ { 4 } x } – \frac { 1 } { 1 2 } \tan ^ { 3 } x – \frac { 1 } { 4 } \tan x + C
\end{aligned}
$$

解法二:去分母

$$
\begin{aligned}
I \\ \\
& = \int \frac { \textcolor{yellow}{ x \tan x } } { \cos ^ { 4 } x } \mathrm { ~ d } x \\ \\
& = \int \textcolor{yellow}{ x \tan x } \cdot \textcolor{springgreen}{\frac { 1 } { \cos ^ { 4 } x } \mathrm { ~ d } x } \\ \\
& = \int \textcolor{yellow}{ x \tan x } \cdot \textcolor{springgreen}{ \sec ^ { 2 } x \sec ^ { 2 } x \mathrm { ~ d } x }
\end{aligned}
$$

接着,根据前面“解法一”中的分析可知,$\frac{1}{\cos ^{4} x}$ $=$ $\left( \tan ^{2} x + 1 \right) \mathrm{~d} ( \tan x)$, 所以:

$$
\begin{aligned}
I \\ \\
& = \int \textcolor{yellow}{ x \tan x } \cdot \textcolor{springgreen}{ \left( 1 + \tan ^ { 2 } x \right) \mathrm { d } \tan x } \\ \\
& = \int x \textcolor{red}{ \tan x \cdot \left( 1 + \tan ^ { 2 } x \right) \mathrm { d } \tan x }
\end{aligned}
$$

又因为:

$$
\textcolor{yellow}{
\left[ \frac{1}{4} (1+ t ^{2}) ^{2} \right] ^{\prime} = t \left( 1 + t ^{2} \right)
}
$$

所以:

$$
\begin{aligned}
I \\ \\
& = \int x \textcolor{red}{ \mathrm { ~ d } \left( \frac { 1 } { 4 } \left( 1 + \tan ^ { 2 } x \right) ^ { 2 } \right) } \\ \\
& = \frac { 1 } { 4 } x \left( 1 + \tan ^ { 2 } x \right) ^ { 2 } – \textcolor{springgreen}{ \frac { 1 } { 4 } \int \left( 1 + \tan ^ { 2 } x \right) ^ { 2 } \mathrm { ~ d } x }
\end{aligned}
$$

又因为:

$$
\textcolor{yellow}{
1 + \tan ^{2} x = \frac{1}{\cos ^{2} x} = (\tan x) ^{\prime} _{x}
}
$$

所以:

$$
\begin{aligned}
I \\ \\
& = \frac { 1 } { 4 } x \left( 1 + \tan ^ { 2 } x \right) ^ { 2 } – \textcolor{springgreen}{ \frac { 1 } { 4 } \int \left( 1 + \tan ^ { 2 } x \right) \left( 1 + \tan ^ { 2 } x \right) \mathrm { ~ d } x } \\ \\
& = \frac { 1 } { 4 } x \left( 1 + \tan ^ { 2 } x \right) ^ { 2 } – \textcolor{springgreen}{ \frac { 1 } { 4 } \int \left( 1 + \tan ^ { 2 } x \right) \mathrm { d } \tan x } \\ \\
& = \frac { 1 } { 4 } x \left( 1 + \tan ^ { 2 } x \right) ^ { 2 } – \textcolor{springgreen}{\frac { 1 } { 4 } \tan x – \frac { 1 } { 1 2 } \tan ^ { 3 } x } + C \\ \\
& = \frac { x } { 4 \cos ^ { 4 } x } – \frac { 1 } { 4 } \tan x – \frac { 1 } { 1 2 } \tan ^ { 3 } x + C
\end{aligned}
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress