用乘除法连接的等价无穷小可以采取“逐个击破”的方式计算

题目 02

难度评级:

解析 02

$$
e^{x^2} – 1 \sim \left(x^2\right)
$$

$$
\begin{aligned}
\sqrt{1+x}-\sqrt{1-x} \\ \\
& = (1+x)^{\frac{1}{2}}-(1-x)^{\frac{1}{2}} \\ \\
& = e^{\frac{1}{2} \ln (1+x)}-e^{\frac{1}{2} \ln (1-x)} \\ \\
& = e^{\frac{1}{2} x}-e^{\frac{1}{2}(-x)} \\ \\
& = \left(e^{\frac{1}{2} x}-1\right)-\left(e^{\frac{1}{2}(-x)}-1\right) \\ \\
& = \frac{1}{2} x+\frac{1}{2} x \\ \\
& = x
\end{aligned}
$$

$$
\begin{aligned}
\ln (1-x)+\ln (1+x) \\ \\
& = \ln (1-x)(1+x) \\ \\
& = \ln \left(1-x^2\right) \\ \\
& = -x^2
\end{aligned}
$$

或者:

$$
\begin{aligned}
\ln (1-x)+\ln (1+x) \\ \\
& = -[(-x-\ln (1-x))+(x-\ln (1+x)] \\ \\
& = -\left[\frac{1}{2}(-x)^2+\frac{1}{2} x^2\right] \\ \\
& = -x^2
\end{aligned}
$$

$$
\sin \frac{x}{1+x} = \left(\frac{x}{1+x}\right)
$$

$$
\begin{aligned}
I \\ \\
& = \frac{x^2 \cdot x}{-x^2 \cdot \frac{x}{1+x}} \\ \\
& = \frac{x^3}{\frac{-x^3}{1+x}} \\ \\
& = x^3 \cdot \frac{1+x}{-x^3} \\ \\
& = -(1+0) \\ \\
& = \textcolor{springgreen}{-1}
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress