阶数越高的无穷小越小,阶数越大的无穷大越大

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

当 $x \rightarrow 0$ 时,由题可知:

$$
\begin{aligned}
\textcolor{springgreen}{\beta(x)} \\ \\
& = \sqrt{1+x^{2}}-\sqrt{1-x^{2}} \\ \\
& = \frac{2 x^{2}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}} \\ \\
& = \frac{2x^{2}}{2} \sim \textcolor{springgreen}{x^{2}}
\end{aligned}
$$

又可知:

$$
\begin{aligned}
\textcolor{springgreen}{\alpha(x)} \\ \\
& = \tan x – \sin x \\ \\
& = \frac{\sin x}{\cos x} – \cos x \cdot \frac{\sin x}{\cos x} \\ \\
& = \tan x – \cos x \tan x \\ \\
& = (1-\cos x) \tan x \\ \\
& = \frac{x^{2}}{2} \cdot x \sim \textcolor{springgreen}{\frac{x^{3}}{2}}
\end{aligned}
$$

还可知

$$
\begin{aligned}
\textcolor{springgreen}{\gamma(x)} \\ \\
& =\int_{0}^{1-\cos x} \sin t \mathrm{~d} t \\ \\
& = -\cos t \Big|_{0} ^{1-\cos x} \\ \\
& =1-\cos (1-\cos x) \\ \\
& = \frac{(\frac{x^{2}}{2})^{2}}{2} \\ \\
& = \frac{(1-\cos x)^{2}}{2} \sim \textcolor{springgreen}{\frac{x^{4}}{8}}
\end{aligned}
$$

如果按照 $x$ 的次幂从低到高排列,就是:

$$
x^{2}, \quad \frac{x^{3}}{2}, \quad \frac{x^{4}}{8} \Rightarrow
$$

$$
\beta(x), \quad \alpha(x), \quad \gamma(x)
$$

综上可知, C 荒原之梦考研数学 | 本文结束


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress