典型例题汇总:不定积分(凑微分、分部积分、一般有理式积分,三角函数有理式积分等)

题目 08

$$
I=\int \frac{x}{x^{3}-x^{2}+x-1} \mathrm{~ d} x = ?
$$

解析 08

用十字相乘法进行拆分:

$$
x^{3}-x^{2}+x-1 \Rightarrow
$$

$$
(x \quad \quad) \cdot\left(x^{2} \quad \quad \right) \Rightarrow x^{3} \Rightarrow
$$

$$
(x-1) \cdot\left(x^{2}\quad \quad \right) \Rightarrow x^{3}-x^{2} \Rightarrow
$$

$$
(x-1) \cdot\left(x^{2}+1\right) \Rightarrow x^{3}-x^{2}+x-1
$$

于是:

$$
\frac{x}{x^{3}-x^{2}+x-1}=\frac{x}{(x-1)\left(x^{2}+1\right)}=
$$

待定系数变乘法为加减法:

$$
\frac{A}{x-1}+\frac{B x+ C}{x^{2}+1} \Rightarrow
$$

$$
\frac{A\left(x^{2}+1\right)+(B x+ C)(x-1)}{(x-1)\left(x^{2}+1\right)}=\frac{x}{(x-1)\left(x^{2}+1\right)} \Rightarrow
$$

$$
A x^{2}+A+B x^{2}-B x+ C x-C=x \Rightarrow
$$

$$
\left\{\begin{array}{l}A+B=0 \\ C-B=1 \\ A-C=0\end{array}\right. \Rightarrow \left\{\begin{array}{l}A+B=0 \\ A-B=1\end{array} \Rightarrow\right. \left\{\begin{array}{l}A=\frac{1}{2} \\ B=\frac{-1}{2} \\ C=\frac{1}{2}\end{array}\right.
$$

于是:

$$
I=\int\left(\frac{\frac{1}{2}}{x-1}+\frac{\frac{-1}{2} x+\frac{1}{2}}{x^{2}+1}\right) \mathrm{~ d} x
$$

$$
I=\frac{1}{2} \int \frac{1}{x-1} \mathrm{~ d} x+\frac{1}{2} \int \frac{1-x}{x^{2}+1} \mathrm{~ d} x \Rightarrow
$$

$$
I=\frac{1}{2} \ln |x-1|+\frac{1}{2}\left[\int \frac{1}{x^{2}+1} \mathrm{~ d} x-\int \frac{x}{x^{2}+1} \mathrm{~ d} x\right]=
$$

$$
I=\frac{1}{2} \ln |x-1|+\frac{1}{2} \arctan x-\frac{1}{2} \int \frac{x}{x^{2}+1} \mathrm{~ d} x .
$$

$$
I=\frac{1}{2} \ln |x-1|+\frac{1}{2} \arctan x-\frac{1}{4} \ln \left(x^{2}+1\right)+ C
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress