基础解系中解的个数就是系数矩阵中自由未知数的个数

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}$ 是 $5 \times 4$ 矩阵,若 $\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}$ 是齐次方程组 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 的基础解系, 则 $r\left(\boldsymbol{A}^{\mathrm{\top}}\right)=?$

难度评级:

二、解析 解析 - 荒原之梦

由于 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 的基础解系中有两个解向量,因此:

$$
n-r=2 \Rightarrow
$$

$$
4-r=2
$$

Tips:

系数矩阵的秩最大为 $n$, 且在 $5 \times 4$ 的矩阵中,秩的最大值只能是 $4$, 因此,这里的 $n=4$.

于是可知:

$$
r (A^{\top}) = r(A) = 4-2=2.
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress