解题不一定要单打独斗:单式问题变双式问题

一、题目题目 - 荒原之梦

已知 $f(x)$ 为连续函数,且 $\int_{0}^{\frac{\pi}{2}} f(x \cos x) \cos x \mathrm{~d} x=A$, 则 $\int_{0}^{\frac{\pi}{2}} f(x \cos x) x \sin x \mathrm{~d} x=?$

$$
(A) \quad 0
$$

$$
(B) \quad A
$$

$$
(C) \quad -A
$$

$$
(D) \quad 2 A
$$

难度评级:

二、解析 解析 - 荒原之梦

既然所给的选项全都可以 $A$ 有关系,$\int_{0}^{\frac{\pi}{2}} f(x \cos x) \cos x \mathrm{~d} x=A$ 也和 $A$ 有关系,因此,$\int_{0}^{\frac{\pi}{2}} f(x \cos x) \cos x \mathrm{~d} x$ 与 $\int_{0}^{\frac{\pi}{2}} f(x \cos x) x \sin x \mathrm{~d} x$ 结合的式子也一定和 $A$ 有关系,于是,可以将这两个式子放一块进行计算。

$$
\int_{0}^{\frac{\pi}{2}} f(x \cos x) \cos x \mathrm{~ d} x-\int_{0}^{\frac{\pi}{2}} f(x \cos x) x \sin x \mathrm{~ d} x \Rightarrow
$$

$$
\int_{0}^{\frac{\pi}{2}} f(x \cos x)[\cos x-x \sin x] \mathrm{~ d} x \Rightarrow
$$

$$
(x \cos x)^{\prime}=\cos x-x \sin x \Rightarrow
$$

$$
\int_{0}^{\frac{\pi}{2}} f(x \cos x) \mathrm{~d} (x \cos x) \Rightarrow
$$

注意:上面的式子只是做了凑微分,并没有进行变量替换,因此,积分上下限不用改变。

若 $F^{\prime}(u)=f(u)$

$$
F(x \cos x) \Big|_{0} ^{\frac{\pi}{2}}= F\left(\frac{\pi}{2} \cdot 0\right)-F(0 \cdot 1) \Rightarrow
$$

$$
F(0)-F(0)=0
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress