求导会降阶,积分会升阶

一、前言 前言 - 荒原之梦

本文通过举例的方式讨论了如下结论:

求导会降阶,积分会升阶。

二、正文 正文 - 荒原之梦

我们知道:

$$
(x^{2})^{\prime} = 2x;
$$

$$
\int x^{2} \mathrm{d} x = \frac{1}{3} x^{3} + C.
$$

通过上面的计算,我们就证明了本文前言中所说的“求导会降阶,积分会升阶”这一结论。

Next - 荒原之梦 Next Next - 荒原之梦

下面,我们通过一个例题继续巩固一下对这个结论的理解。

例题 1:若函数 $f(x)$ 连续,且当 $x \rightarrow a$ 时,$f(x)$ 是 $x-a$ 的 $n$ 阶无穷小,则当 $x \rightarrow a$ 时,$\int_{a}^{x} f(t) \mathrm{d} t$ 是 $x-a$ 的多少阶无穷小?

解析 1:由于 $\big[\int_{a}^{x} f(t) \mathrm{d} t \big]^{\prime}$ $=$ $f(x)$, 因此,$\big[\int_{a}^{x} f(t) \mathrm{d} t \big]^{\prime}$ 是 $x – a$ 的 $n$ 阶无穷小,根据“求导会降阶,积分会升阶”的原理可知:$\int_{a}^{x} f(t) \mathrm{d} t$ 是 $x-a$ 的 $n+1$ 阶无穷小。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress