空间曲面的面积(B020)

问题

已知曲面 $A$ 由方程 $z$ $=$ $f(x, y)$ 确定,平面区域 $D_{x y}$ 为曲面 $A$ 在三维直角坐标系 $x O y$ 面上的投影,且函数 $f(x, y)$ 在区域 $D_{x y}$ 上具有连续的偏导数 $f_{x}(x, y)$ 和 $f_{y}(x, y)$, 则曲面的面积 $S$ $=$ $?$

选项

[A].   $S$ $=$ $\iint_{D_{x y}}$ $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)+\left(\frac{\partial z}{\partial y}\right)}$ $\mathrm{~d} x \mathrm{~d} y$

[B].   $S$ $=$ $\iint_{D_{x y}}$ $\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ $\mathrm{~d} x \mathrm{~d} y$

[C].   $S$ $=$ $\iint_{D_{x y}}$ $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ $\mathrm{~d} x \mathrm{~d} y$

[D].   $S$ $=$ $\iint_{D_{x y}}$ $\sqrt{1-\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}}$ $\mathrm{~d} x \mathrm{~d} y$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$S$ $=$ $\iint_{D_{x y}}$ $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ $\mathrm{~d} x \mathrm{~d} y$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress