问题
已知有积分区域 $D_{1}$, $D_{2}$ 和 $D$, 且 $D_{1}$ $\cup$ $D_{2}$ $=$ $D$, $D_{1}$ 与 $D_{2}$ 刚好相交但不重叠,即 $D_{1}$ $\cap$ $D_{2}$ 为曲线。则以下选项中,正确的是哪个?
选项
[A]. $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $-$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$[B]. $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $+$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$
[C]. $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D – D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $+$ $\iint_{D – D_{2}} f(x, y) \mathrm{d} \sigma$
[D]. $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $\times$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$