二重积分的积分区域可加的性质(B014)

问题

已知有积分区域 $D_{1}$, $D_{2}$ 和 $D$, 且 $D_{1}$ $\cup$ $D_{2}$ $=$ $D$, $D_{1}$ 与 $D_{2}$ 刚好相交但不重叠,即 $D_{1}$ $\cap$ $D_{2}$ 为曲线。

则以下选项中,正确的是哪个?

选项

[A].   $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $-$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$

[B].   $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $+$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$

[C].   $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D – D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $+$ $\iint_{D – D_{2}} f(x, y) \mathrm{d} \sigma$

[D].   $\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $\times$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\iint_{D}$ $f(x, y) \mathrm{d} \sigma$ $=$ $\iint_{D_{1}}$ $f(x, y) \mathrm{d} \sigma$ $+$ $\iint_{D_{2}} f(x, y) \mathrm{d} \sigma$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress