问题
若空间区域 $\Omega$ 的体密度为 $\rho$, 则该空间区域质心坐标 $($ $\textcolor{orange}{\bar{x}}, \textcolor{orange}{\bar{y}}, \textcolor{orange}{\bar{z}}$ $)$ $=$ $?$选项
[A]. $\begin{cases} & \bar{x} = \frac{\iiint_{\Omega} x \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{y} = \frac{\iiint_{\Omega} y \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{z} = \frac{\iiint_{\Omega} z \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \end{cases}$[B]. $\begin{cases} & \bar{x} = \frac{\iiint_{\Omega} x^{2} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{y} = \frac{\iiint_{\Omega} y^{2} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{z} = \frac{\iiint_{\Omega} z^{2} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \end{cases}$
[C]. $\begin{cases} & \bar{x} = \frac{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} x \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{y} = \frac{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} y \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{z} = \frac{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} z \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \end{cases}$
[D]. $\begin{cases} & \bar{x} = \frac{\iiint_{\Omega} x \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{y} = \frac{\iiint_{\Omega} y \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \\ & \bar{z} = \frac{\iiint_{\Omega} z \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z}{\iiint_{\Omega} \rho \mathrm{d} x \mathrm{d} y \mathrm{d} z} \end{cases}$
$\begin{cases} & \textcolor{orange}{\bar{x}} = \frac{\iiint_{\Omega} \textcolor{red}{x} \textcolor{green}{\cdot} \textcolor{red}{\rho} \mathrm{d} \textcolor{cyan}{x} \mathrm{d} \textcolor{cyan}{y} \mathrm{d} \textcolor{cyan}{z}}{\iiint_{\Omega} \textcolor{red}{\rho} \mathrm{d} \textcolor{cyan}{x} \mathrm{d} \textcolor{cyan}{y} \mathrm{d} \textcolor{cyan}{z}} \\ & \textcolor{orange}{\bar{y}} = \frac{\iiint_{\Omega} \textcolor{red}{y} \textcolor{green}{\cdot} \textcolor{red}{\rho} \mathrm{d} \textcolor{cyan}{x} \mathrm{d} \textcolor{cyan}{y} \mathrm{d} \textcolor{cyan}{z}}{\iiint_{\Omega} \textcolor{red}{\rho} \mathrm{d} \textcolor{cyan}{x} \mathrm{d} \textcolor{cyan}{y} \mathrm{d} \textcolor{cyan}{z}} \\ & \textcolor{orange}{\bar{z}} = \frac{\iiint_{\Omega} \textcolor{red}{z} \textcolor{green}{\cdot} \textcolor{red}{\rho} \mathrm{d} \textcolor{cyan}{x} \mathrm{d} \textcolor{cyan}{y} \mathrm{d} \textcolor{cyan}{z}}{\iiint_{\Omega} \textcolor{red}{\rho} \mathrm{d} \textcolor{cyan}{x} \mathrm{d} \textcolor{cyan}{y} \mathrm{d} \textcolor{cyan}{z}} \end{cases}$