问题
若函数 $f(x)$ 是以 $T$ 为周期的连续 [周期函数],$a$ 为任意实数,则下面关于定积分 $\textcolor{Orange}{\int_{a}^{a + T}}$ $\textcolor{Orange}{f(x)}$ $\textcolor{Orange}{\mathrm{d} x}$ 的结论中,正确的是哪个?选项
[A]. $\int_{a}^{a + T}$ $f(x)$ $\mathrm{d} x$ $=$ $\int_{0}^{-T}$ $f(x)$ $\mathrel{d} x$[B]. $\int_{a}^{a + T}$ $f(x)$ $\mathrm{d} x$ $=$ $\int_{-T}^{T}$ $f(x)$ $\mathrel{d} x$
[C]. $\int_{a}^{a + T}$ $f(x)$ $\mathrm{d} x$ $=$ $\int_{a}^{T}$ $f(x)$ $\mathrel{d} x$
[D]. $\int_{a}^{a + T}$ $f(x)$ $\mathrm{d} x$ $=$ $\int_{0}^{T}$ $f(x)$ $\mathrel{d} x$
$$\int_{\textcolor{Red}{a}}^{\textcolor{Red}{a + T}} f(x) \mathrm{d} x =$$ $$\int_{\textcolor{Red}{0}}^{\textcolor{Red}{T}} f(x) \mathrel{d} x =$$ $$\int_{\textcolor{Red}{-\frac{T}{2}}}^{\textcolor{Red}{\frac{T}{2}}} f(x) \mathrel{d} x.$$ 注意:对于被积函数是同一个周期函数的定积分而言,只要上限与下限的差值相等,则这两个定积分就是相等的.
此外:
$$\int_{\textcolor{Red}{0}}^{\textcolor{Red}{a \cdot T}} f(x) \mathrm{d} x =$$ $$\textcolor{Orange}{a} \textcolor{Green}{\cdot} \int_{\textcolor{Red}{0}}^{\textcolor{Red}{T}} f(x) \mathrm{d} x.$$