问题
当定积分 $\textcolor{Orange}{\int_{0}^{\frac{\pi}{2}}}$ $\textcolor{Orange}{\sin} ^{\textcolor{Red}{n}} \textcolor{Orange}{x}$ $\textcolor{Orange}{\mathrm{d} x}$ 和 $\textcolor{Orange}{\int_{0}^{\frac{\pi}{2}}}$ $\textcolor{Orange}{\cos} ^{\textcolor{Red}{n}} \textcolor{Orange}{x}$ $\textcolor{Orange}{\mathrm{d} x}$ 中的 $\textcolor{Red}{n}$ 为大于 $\textcolor{Orange}{1}$ 的 [偶数] 时,以下关于 [华里士点火公式] 的选项中,正确的是哪个?选项
[A]. $\int_{0}^{\frac{\pi}{2}}$ $\sin ^{n} x$ $\mathrm{d} x$ $=$ $\int_{0}^{\frac{\pi}{2}}$ $\cos ^{n} x$ $\mathrm{d} x$ $=$ $\frac{n-1}{n}$ $\cdot$ $\frac{n-3}{n-2}$ $\cdots$ $\frac{2}{3}$ $\cdot$ $1$[B]. $\int_{0}^{\frac{\pi}{2}}$ $\sin ^{n} x$ $\mathrm{d} x$ $=$ $\int_{0}^{\frac{\pi}{2}}$ $\cos ^{n} x$ $\mathrm{d} x$ $=$ $\frac{n-1}{n}$ $\cdot$ $\frac{n-3}{n-2}$ $\cdots$ $\frac{1}{2}$ $\cdot$ $\frac{\pi}{2}$
[C]. $\int_{0}^{\frac{\pi}{2}}$ $\sin ^{n} x$ $\mathrm{d} x$ $=$ $\int_{0}^{\frac{\pi}{2}}$ $\cos ^{n} x$ $\mathrm{d} x$ $=$ $\frac{n-1}{n}$ $\cdot$ $\frac{n-2}{n-1}$ $\cdots$ $\frac{1}{2}$ $\cdot$ $\frac{\pi}{2}$
[D]. $\int_{0}^{\frac{\pi}{2}}$ $\sin ^{n} x$ $\mathrm{d} x$ $=$ $\int_{0}^{\frac{\pi}{2}}$ $\cos ^{n} x$ $\mathrm{d} x$ $=$ $\frac{n-1}{n}$ $\cdot$ $\frac{n-3}{n-2}$ $\cdots$ $\frac{1}{2}$ $\cdot$ $1$
$$\int_{\textcolor{Orange}{0}}^{\textcolor{Orange}{\frac{\pi}{2}}} \textcolor{Yellow}{\sin} ^{\textcolor{Red}{n}} \textcolor{Yellow}{x} \mathrm{d} x =$$ $$\int_{\textcolor{Orange}{0}}^{\textcolor{Orange}{\frac{\pi}{2}}} \textcolor{Yellow}{\cos} ^{\textcolor{Red}{n}} \textcolor{Yellow}{x} \mathrm{d} x =$$ $$\frac{\textcolor{Red}{n-1}}{\textcolor{Red}{n}} \cdot \frac{\textcolor{Red}{n-3}}{\textcolor{Red}{n-2}} \cdots \frac{\textcolor{Red}{1}}{\textcolor{Red}{2}} \cdot \frac{\textcolor{Red}{\pi}}{\textcolor{Red}{2}}.$$