一、题目
已知 $\boldsymbol{A}=\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}\right]$, $\boldsymbol{B}=\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{n}\right]$, $\boldsymbol{A} \boldsymbol{B}=\left[\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \cdots, \boldsymbol{\gamma}_{n}\right]$ 都是 $n$ 阶矩阵。
记向量组 ( I ) $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}$; (II) $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{n}$; (III) $\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \cdots, \boldsymbol{\gamma}_{n}$
若向量组 ( III ) 线性相关, 则以下说法正确的是哪个?
(A) (Ⅰ) , (Ⅱ) 均线性相关
(B) (Ⅰ) 或 (Ⅱ) 中至少有一个线性相关
(C) (Ⅰ) 一定线性相关
(D) (Ⅱ) 一定线性相关
难度评级:
继续阅读“对向量组是否线性相关的判断可以转化为对行列式是否等于零的判断”