向量组“高维相关”的引申结论(C018)

问题

已知,向量组 $\beta_{1}$, $\beta_{2}$, $\cdots$, $\beta_{m}$ 是维度相同的列向量。如果 $\textcolor{cyan}{\left(\begin{array}{l}\boldsymbol{\alpha}_{1} \\ \boldsymbol{\beta}_{1} \end{array}\right)}$, $\textcolor{cyan}{\left(\begin{array}{l}\boldsymbol{\alpha}_{2} \\ \boldsymbol{\beta}_{2} \end{array}\right)}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{\left(\begin{array}{l}\boldsymbol{\alpha}_{m} \\ \boldsymbol{\beta}_{m} \end{array}\right)}$ 线 ,则对应的低维向量组 $\textcolor{orange}{\boldsymbol{\alpha}_{1}}$, $\textcolor{orange}{\boldsymbol{\alpha}_{2}}$, $\textcolor{orange}{\cdots}$, $\textcolor{orange}{\boldsymbol{\alpha}_{\boldsymbol{m}}}$ 如何?

选项

[A].   线性无关

[B].   线性相关

[C].   无法判断


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

,则

向量组“低维无关”的引申结论(C018)

问题

已知,向量组 $\beta_{1}$, $\beta_{2}$, $\cdots$, $\beta_{m}$ 是维度相同的列向量。如果 $\textcolor{orange}{\boldsymbol{\alpha}_{1}}$, $\textcolor{orange}{\boldsymbol{\alpha}_{2}}$, $\textcolor{orange}{\cdots}$, $\textcolor{orange}{\boldsymbol{\alpha}_{\boldsymbol{m}}}$ 线 ,则对应的高维向量组 $\textcolor{cyan}{\left(\begin{array}{l}\boldsymbol{\alpha}_{1} \\ \boldsymbol{\beta}_{1} \end{array}\right)}$, $\textcolor{cyan}{\left(\begin{array}{l}\boldsymbol{\alpha}_{2} \\ \boldsymbol{\beta}_{2} \end{array}\right)}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{\left(\begin{array}{l}\boldsymbol{\alpha}_{m} \\ \boldsymbol{\beta}_{m} \end{array}\right)}$ 如何?

选项

[A].   线性相关

[B].   线性无关

[C].   无法判断


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

,则

向量组“部分相关”的引申结论(C018)

问题

如果一个向量组 $\textcolor{orange}{\alpha_{1}}$, $\textcolor{orange}{\alpha_{2}}$, $\textcolor{orange}{\cdots}$, $\textcolor{orange}{\alpha_{m}}$ 中有 向量线性 ,则 向量组的线性 如何?

选项

[A].   整体无关

[B].   整体相关

[C].   无法判断


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

,则

向量组“整体无关”的引申结论(C018)

问题

如果一个向量组 $\textcolor{orange}{\alpha_{1}}$, $\textcolor{orange}{\alpha_{2}}$, $\textcolor{orange}{\cdots}$, $\textcolor{orange}{\alpha_{m}}$ 线性 ,则该向量组中 向量组的线性 如何?

选项

[A].   无法判断

[B].   部分相关

[C].   部分无关


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

,则


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress