问题
若向量组 $\textcolor{orange}{\alpha_{1}}$, $\textcolor{orange}{\alpha_{2}}$, $\textcolor{orange}{\cdots}$, $\textcolor{orange}{\alpha_{m}}$
线 性 相 关,则对应的齐次线性方程组 $x_{1} \boldsymbol{\alpha}_{1}$ $+$ $x_{2} \boldsymbol{\alpha}_{2}$ $+$ $\cdots$ $+$ $x_{m} \boldsymbol{\alpha}_{m}$ $=$ $(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha_{m}})$ $\left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_m \end{array}\right)$ $=$ $\mathbf{0}$ 的
解 应该具有什么
特 征 ?
选项
[A]. 有实数解[B]. 无解[C]. 只有零解[D]. 有非零解 答 案
向量组 $\textcolor{orange}{\alpha_{1}}$, $\textcolor{orange}{\alpha_{2}}$, $\textcolor{orange}{\cdots}$, $\textcolor{orange}{\alpha_{m}}$ 线 性 相 关
$\textcolor{red}{\Leftrightarrow}$
对应的 齐 次 线 性 方程组有 非 零 解