2020年考研数二第04题解析:函数的高阶导、麦克劳林公式、泰勒公式、莱布尼茨公式

一、题目

二、解析

根据 $\ln (1+x)$ 的麦克劳林公式,可知(橙色标注的部分是其第 $n$ 阶导对应的项):

$$
\ln(1 + x) = x – \frac{x^{2}}{2} + \frac{x^{3}}{3} – \cdots \textcolor{orange}{ + \frac{(-1)^{n-1}x^{n}}{n} } + o(x^{n})
$$

类推于是可知,$\ln(1 – x)$ 的麦克劳林公式为(橙色标注的部分是其第 $n$ 阶导对应的项):

$$
\begin{aligned}
\ln(1 – x) & = -x – \frac{x^{2}}{2} – \cdots \textcolor{orange}{ – \frac{x^{n}}{n} } + o(x^{n}) \\ \\
& = -\left(x + \frac{x^{2}}{2} + \cdots \textcolor{orange}{ + \frac{x^{n}}{n} } \right) + o(x^{n})
\end{aligned}
$$

进而可知,$f(x)$ 的麦克劳林公式为(橙色标注的部分是其第 $n+2$ 阶导对应的项,浅绿色标注的部分是其第 $n$ 阶导对应的项):

$$
\begin{aligned}
f(x) & = x^{2} \ln(1 – x) \\ \\
& = x^{2} \left[ -\left(x + \frac{x^{2}}{2} + \cdots \textcolor{orange}{ + \frac{x^{n}}{n} } \right) + o(x^{n}) \right] \\ \\
& = -\left(x^{3} + \frac{x^4}{2} + \cdots \textcolor{orange}{ + \frac{x^{n+2}}{n} } \right) + o(x^{n+2}) \\ \\
& = \textcolor{magenta}{-} \left(x^{3} + \frac{x^4}{2} + \cdots \textcolor{lightgreen}{+ \frac{x^{n}}{n-2}} + \cdots \textcolor{orange}{ + \frac{x^{n+2}}{n} } \right) + o(x^{n+2})
\end{aligned}
$$

于是,根据麦克劳林公式的定义可知:

$$
\begin{aligned}
& \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \textcolor{magenta}{-} \textcolor{lightgreen}{+ \frac{x^{n}}{n-2}} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \frac{- x^{n}}{n-2} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} = \frac{-1}{n-2} \\ \\
\leadsto \ & \textcolor{springgreen}{ f^{(n)}(0) = \frac{-n!}{n-2} }
\end{aligned}
$$

综上可知, A 荒原之梦考研数学 | 本文结束

根据求和形式的泰勒公式可知:

$$
\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot x^{n}
$$

于是可知,$\ln (1 – x)$ 的泰勒展开式为:

$$
\begin{aligned}
\textcolor{springgreen}{ \ln(1-x) } & = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot (-x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{n-1}}}{n} \cdot \textcolor{orangered}{ (-1)^{n} } \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{n-1} \cdot (-1)^{n} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{2n-1} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{2n} \cdot (-1)^{-1} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{-1} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ -1 } }{n} \cdot (x)^{n} \\ \\
& = \textcolor{springgreen}{ \sum_{n=1}^{\infty}\frac{-x^{n}}{n} }
\end{aligned}
$$

进而可知,$x^{2}\ln(1-x)$ 的泰勒展开式为:

$$
x^{2}\ln(1-x) = \sum_{n=1}^{\infty} \frac{-x^{n+2}}{n}
$$

由于题目说 $n$ 大于或等于 $3$, 且根据泰勒公式的定义可知,$x$ 的 $n$ 次方对应的就是函数的 $n$ 阶导(如果 $x$ 的次方数比 $n$ 大或者比 $n$ 小的话,求 $n$ 阶导之后都会变成 $0$, 从而消失),于是,我们通过将 $n$ 的取值开始点设置为 $3$, 来更改一下其求和表达式的形式,即:

$$
\textcolor{lightgreen}{ x^{2}\ln(1-x) } = \sum_{n=1}^{\infty} \frac{-x^{n+2}}{n} = \textcolor{lightgreen}{ \sum_{n=3}^{\infty}\frac{-x^{n}}{n-2} }
$$

于是可得:

$$
\begin{aligned}
& \sum_{n=3}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \textcolor{lightgreen}{\sum_{n=3}^{\infty} \frac{-x^{n}}{n-2}} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \textcolor{lightgreen}{\frac{-x^{n}}{n-2}} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \frac{- x^{n}}{n-2} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} = \frac{-1}{n-2} \\ \\
\leadsto \ & \textcolor{springgreen}{ f^{(n)}(0) = \frac{-n!}{n-2} }
\end{aligned}
$$

综上可知, A 荒原之梦考研数学 | 本文结束

由莱布尼茨公式可知:

$$
f^{(n)} = (uv)^{(n)} = \sum_{k=0}^{n} C_{n}^{k} u^{(n-k)} v^{(k)}
$$

其中,$C_{n}^{k}$ $=$ $\frac{n!}{k! (n-k)!}$.

于是,对于本题,可得:

$$
\begin{aligned}
f^{(n)}(x) & = \sum_{k=0}^{n} C_{n}^{k} (x^{2})^{(k)} \cdot [\ln(1-x)]^{(n-k)} \\ \\
& = C_{n}^{0} \cdot x^{2} \cdot [\ln(1-x)]^{(n)} + C_{n}^{1} \cdot 2x \cdot [\ln(1-x)]^{(n-1)} \\
& + C_{n}^{2} \cdot 2 \cdot [\ln(1-x)]^{(n-2)} + \textcolor{gray}{ C_{n}^{3} \cdot \textcolor{orangered}{0} \cdot [\ln(1-x)]^{(n-3)} + \cdots } \\ \\
& = C_{n}^{0} \cdot \textcolor{orange}{ x^{2} } \cdot [\ln(1-x)]^{(n)} + C_{n}^{1} \cdot \textcolor{orange}{ 2x } \cdot [\ln(1-x)]^{(n-1)} + C_{n}^{2} \cdot 2 \cdot [\ln(1-x)]^{(n-2)}
\end{aligned}
$$

因此:

$$
\textcolor{lightgreen}{ f^{(n)}(0) } = C_{n}^{2} \cdot 2 \cdot [\ln(1-x)]^{(n-2)} = \textcolor{lightgreen}{ \frac{n!}{(n-2)!} \cdot [\ln(1-x)]^{(n-2)} }
$$

接下来,我们需要知道上面式子中 $[\ln(1-x)]^{(n-2)}$ 的求导表达式——

由「荒原之梦考研数学」的《公式类推的过程中一定要注意约束条件是否唯一》这篇文章可知:

$$
[\ln(1-x)]^{(n-2)} = -1 \cdot \frac{(n-3)!}{(1-x)^{n-2}}
$$

因此可知:

$$
\begin{aligned}
\textcolor{springgreen}{ f^{(n)}(0) } & = \frac{n!}{(n-2)!} \cdot [\ln(1-x)]^{(n-2)} \\ \\
& = \frac{n!}{(n-2)!} \cdot -1 \cdot \frac{(n-3)!}{(1-0)^{n-2}} \\ \\
& = \frac{n!}{(n-2)!} \cdot -1 \cdot (n-3)! \\ \\
& = -1 \cdot \frac{n! \cdot (n-3)!}{(n-2)!} \\ \\
& = -1 \cdot \frac{n! \cdot \textcolor{gray}{ (n-3)! \cdot (n-4)! \cdot (n-5)!}}{(n-2)! \cdot \textcolor{gray}{ (n-3)! \cdot (n-4)! \cdot (n-5)!}} \\ \\
& = \textcolor{springgreen}{ \frac{- n!}{(n-2)!} }
\end{aligned}
$$

综上可知, A 荒原之梦考研数学 | 本文结束

首先,由题目可知:

$$
f(x)=x^{2} \ln (1-x)
$$

于是,其一阶导、二阶导和三阶导为:

$$
\begin{aligned}
f^{\prime}(x) & = 2 x \ln (1-x)-\frac{x^{2}}{1-x} \\ \\
f^{\prime \prime}(x) & = 2 \ln (1-x)-\frac{2 x}{1-x}-\frac{2 x-x^{2}}{(1-x)^{2}} \\ \\
f^{\prime \prime \prime}(x) & = -\frac{2}{1-x} – \frac{2}{(1-x)^{2}} – \frac{(2-2 x)(1-x)^{2}+2\left(2 x-x^{2}\right)(1-x)}{(1-x)^{4}}
\end{aligned}
$$

于是可知,当 $x = 0$ 时, $f^{(3)}(0)$ $=$ $f^{\prime \prime \prime}(0)$ $=$ $-2-2-2$ $=$ $\textcolor{white}{\colorbox{green}{ -6 }}$

同时,我们将 $n = 3$ 逐一代入题目所给的四个选项,可知:

⟨A⟩ 选项:$n=3$ $\textcolor{lightgreen}{ \leadsto }$ $-\frac{1 \times 2 \times 3}{3-2}$ $=$ $\textcolor{white}{\colorbox{green}{ -6 }}$ ;

⟨B⟩ 选项:$n=3$ $\textcolor{lightgreen}{ \leadsto }$ $\frac{3!}{1}$ $=$ $\textcolor{red}{ 6 }$ ;

⟨C⟩ 选项:$n=3$ $\textcolor{lightgreen}{ \leadsto }$ $\frac{-1!}{3}$ $=$ $\textcolor{red}{ \frac{-1}{3} }$

⟨D⟩ 选项:$你= 3$ $\textcolor{lightgreen}{ \leadsto }$ $\frac{1!}{3}$ $=$ $\textcolor{red}{ \frac{1}{3} }$

综上可知, A 荒原之梦考研数学 | 本文结束

2020年考研数二第03题解析:定积分、换元积分、三角函数积分

一、题目

继续阅读“2020年考研数二第03题解析:定积分、换元积分、三角函数积分”

2020年考研数二第02题解析:函数间断点、第二类函数间断点

一、题目

继续阅读“2020年考研数二第02题解析:函数间断点、第二类函数间断点”

2020年考研数二第01题解析:等价无穷小、变上限积分

一、题目

继续阅读“2020年考研数二第01题解析:等价无穷小、变上限积分”

2019年考研数二第22题解析:等价矩阵、线性表达

一、题目

难度评级:

二、解析

首先,由于等价矩阵一定包含相似矩阵,所以,等价矩阵和相似矩阵一样,都具有下面的链式等秩公式

$$
\textcolor{lightgreen}{
\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix} = \mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix} = \mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix} = \mathrm{r} \begin{pmatrix}
\boldsymbol{A} \\
\boldsymbol{B}
\end{pmatrix}
} \tag{1}
$$

其中,矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 互为等价矩阵或者相似矩阵.

接着,令:

$$
\begin{align}
\textcolor{lightgreen}{ \boldsymbol{A} } & = \begin{pmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} \end{pmatrix} = \textcolor{lightgreen}{ \begin{bmatrix}
\textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{1}} & 1 \\
\textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{0}} & 2 \\
4 & 4 & a^{2} + 3
\end{bmatrix} } \tag{2} \\ \notag \\
\textcolor{lightgreen}{ \boldsymbol{B} } & = \begin{pmatrix} \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3} \end{pmatrix} = \textcolor{lightgreen}{ \begin{bmatrix}
\textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{0}} & 1 \\
\textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{2}} & 3 \\
a+3 & 1-a & a^{2} + 3
\end{bmatrix} } \tag{3}
\end{align}
$$

由于向量组 $I$ 与 $II$ 等价,所以,对应的矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 也互为等价矩阵.

观察上面的 $(2)$ 式和 $(3)$ 式可知,一定有(绿色背景白色文字的元素构成的二阶子式不等于零):

$$
\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix} \geqslant 2, \ \mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix} \geqslant 2
$$

所以,矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 的秩的可能的取值都有两个,即 $\mathrm{r}$ $=$ $2$ 或者 $\mathrm{r}$ $=$ $3$. 于是,根据《图解等价/相似矩阵的链式等秩公式》这篇文章第三节的结论,我们需要使用涵盖三个矩阵的等秩公式:

$$
\textcolor{lightgreen}{
\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix} = \mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix} = \mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}
} \tag{4}
$$

于是,我们接下来要构造出矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$, 并对其做一些初等行变换(不能做初等列变换,因为这可能会导致属于矩阵 $\boldsymbol{A}$ 的列向量和属于矩阵 $\boldsymbol{B}$ 的列向量混合在一起,从而使得到的矩阵不再是矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$, 而是其他的矩阵),消出一些 $0$ 元素:

$$
\begin{align}
\textcolor{lightgreen}{ \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix} } & = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 2 & 1 & 2 & 3 \\
4 & 4 & a^{2} + 3 & a+ 3 & 1 – a & a^{2} + 3
\end{bmatrix} \notag \\ \notag \\
& = \textcolor{lightgreen}{ \begin{bmatrix}
\textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{1}} & 1 & 1 & 0 & 1 \\
\textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{-1}} & 1 & 0 & 2 & 2 \\
0 & 0 & a^{2} – 1 & a – 1 & 1 – a & a^{2} – 1
\end{bmatrix} } \tag{4}
\end{align}
$$

接着,观察上面的 $(2)$, $(3)$, $(5)$ 式可知,一定有(绿色背景白色文字的元素构成的二阶子式不等于零):

$$
\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix} \geqslant 2, \ \mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix} \geqslant 2, \ \mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix} \geqslant 2
$$

所以,上面的 $(4)$ 式能否成立,主要就取决于 $(2)$, $(3)$, $(5)$ 式对应的矩阵中,第三行元素是否都为(或者可以消为)$0$ 元素;或者是否都不为 $0$ 元素——

或者说,上面的 $(4)$ 式能否成立,主要就取决于矩阵 $\boldsymbol{A}$, 矩阵 $\boldsymbol{B}$, 矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 的秩是否都等于 $2$, 或者都等于 $3$——

计算可知,根据 $a$ 的不同取值,对应矩阵的秩如下:

  • 当 $a = 1$ 或者 $a = -1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $2$, 否则,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $3$;
  • 当 $a = 1$ 或者 $a = -1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $2$, 否则,$\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $3$;
  • 当 $a = 1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ $=$ $2$, 否则,$\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ $=$ $3$.

接下来,我们有两种方法对 $a$ 的取值进行分析讨论——

:逐个尝试

  • 当 $a = 1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ $=$ $2$;
  • 当 $a = – 1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $\neq$ $\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$;
  • 当 $a \neq \pm 1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ $=$ $3$.

因此,只有当 $a \neq – 1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 成立.

:峰式画图法

分析可知,我们已经知道了 $a$ 的不同取值,以及对应矩阵的秩,所以,接下来要做的就是看看 $a$ 取什么值的时候,矩阵 $\boldsymbol{A}$, 矩阵 $\boldsymbol{B}$ 和矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 的秩相同.

于是,我们可以绘制两个同心圆,小圆对应的区域表示 $\mathrm{r}$ $=$ $2$, 大圆对应的区域表示 $\mathrm{r}$ $=$ $3$, 接着再绘制两条直线(这两条直线不一定需要垂直,此外,如果有更多的条件需要同时考虑,我们可以绘制更多的相交或者不相交的圆形以及直线),蓝色直线表示 $a$ $=$ $1$, 橙色直线表示 $a$ $=$ $-1$, 直线之外的其他区域表示 $a$ $\neq$ $1$ 且 $a$ $\neq$ $-1$, 从而构造一个如图 01 所示的筛选图:

荒原之梦考研数学 | 2019年考研数二第22题解析:等价矩阵、线性表达 | 图 01.
图 01. 通过圆形和直线实现的同时考虑多个条件的筛选图.

因此:

对于“当 $a = 1$ 或者 $a = -1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $2$, 否则,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $3$”,我们可以将其以如图 02 所示的方式绘制在筛选图上:

荒原之梦考研数学 | 2019年考研数二第22题解析:等价矩阵、线性表达 | 图 02.
图 02. 矩阵 $\boldsymbol{A}$ 在筛选图上的位置示意.

对于“当 $a = 1$ 或者 $a = -1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $2$, 否则,$\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $3$”,我们可以将其以如图 03 所示的方式绘制在筛选图上:

荒原之梦考研数学 | 2019年考研数二第22题解析:等价矩阵、线性表达 | 图 03.
图 03. 矩阵 $\boldsymbol{B}$ 在筛选图上的位置示意.

对于“当 $a = 1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ $=$ $2$, 否则,$\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ $=$ $3$”,我们可以将其以如图 04 所示的方式绘制在筛选图上:

荒原之梦考研数学 | 2019年考研数二第22题解析:等价矩阵、线性表达 | 图 04.
图 04. 矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 在筛选图上的位置示意.

综上,我们就有了如图 05 所示的全局筛选图:

荒原之梦考研数学 | 2019年考研数二第22题解析:等价矩阵、线性表达 | 图 05.
图 05. 包含矩阵 $\boldsymbol{A}$, 矩阵 $\boldsymbol{B}$ 和矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 的全局筛选图.

从上面的筛选图可以很明确地看出来:

  • 当 $a$ $=$ $1$ 的时候,矩阵 $\boldsymbol{A}$, 矩阵 $\boldsymbol{B}$ 和矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 在小圆对应区域内的同一条线上,说明此时这三个矩阵的秩相等;
  • 当 $a \neq \pm 1$ 的时候,矩阵 $\boldsymbol{A}$, 矩阵 $\boldsymbol{B}$ 和矩阵 $\begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 在大圆对应区域内,说明此时这三个矩阵的秩相等;
  • 当 $a$ $=$ $-1$ 的时候,只有矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 在小圆对应区域内的同一条线上,说明当 $a$ $=$ $-1$ 时,$\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $\neq$ $\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$,于是可知:

若要使 $\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix}$ $=$ $\mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix}$ 成立,必须有:

$$
\textcolor{lightgreen}{
a \neq -1
}
$$

通过上面一问的计算可知,$a$ 的取值需要为 $a$ $=$ $1$ 或者 $a \neq \pm 1$.

于是,接下来将 $\boldsymbol{\beta}_{3}$ 用 $\boldsymbol {\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\boldsymbol{\alpha}_{3}$ 线性表示的时候,需要分两种情况计算,第一种情况是:$a$ $=$ $1$; 第二种情况是:$a$ $\neq$ $\pm 1$—

(1) 当 $a$ $=$ $1$ 时

$$
\begin{aligned}
\begin{pmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{3} \end{pmatrix} \\ \\
\leadsto \ & \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 3 \\
4 & 4 & 4 & 4
\end{bmatrix} \\ \\
\leadsto \ & \begin{bmatrix}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{bmatrix} \\ \\
\leadsto \ & \begin{bmatrix}
\textcolor{orange}{x_{1}} & \textcolor{orange}{x_{2}} & \textcolor{orange}{x_{3}} & \textcolor{lightgreen}{\boldsymbol{\beta}_{3}} \\
1 & 0 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{bmatrix} \\ \\
\end{aligned}
$$

于是可知,线性方程 $\boldsymbol{\beta}_{3}$ $=$ $x_{1} \boldsymbol{\alpha}_{1}$ $+$ $x_{2} \boldsymbol{\alpha}_{2}$ $+$ $x_{3} \boldsymbol{\alpha}_{3}$ 的等价方程组为:

$$
\begin{aligned}
& \begin{cases}
3 = x_{1} + 2 x_{3} \\
-2 = x_{2} – x_{3}
\end{cases} \\ \\
\leadsto \ & \begin{cases}
2x_{3} = 3 – x_{1} \\
x_{3} = x_{2} + 2
\end{cases} \\ \\
\leadsto \ & \textcolor{gray}{\text{令 } x_{3} = k} \\ \\
\leadsto \ & \begin{cases}
x_{1} = 3 – 2k \\
x_{2} = k-2
\end{cases}
\end{aligned}
$$

于是:

$$
\textcolor{lightgreen}{
\boldsymbol{\beta}_{3} = (3 – 2k) \boldsymbol{\alpha}_{1} + (k-2) \boldsymbol{\alpha}_{2} + k \boldsymbol{\alpha}_{3}
}
$$

其中,$k$ 为任意常数.

(2) 当 $a$ $\neq$ $\pm 1$ 时

$$
\begin{aligned}
\begin{pmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{3} \end{pmatrix} \\ \\
\leadsto \ & \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 3 \\
4 & 4 & a^{2}+3 & a^{2}+3
\end{bmatrix} \\ \\
\leadsto \ & \textcolor{gray}{ 第三行减去第一行的四倍 } \\ \\
\leadsto \ & \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 3 \\
0 & 0 & a^{2}-1 & a^{2}-1
\end{bmatrix} \\ \\
\leadsto \ & \textcolor{gray}{ \text{第三行除以 } a^{2}-1 } \\ \\
\leadsto \ & \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 3 \\
0 & 0 & 1 & 1
\end{bmatrix} \\ \\
\leadsto \ & \textcolor{gray}{第一行减去第三行} \\ \\
\leadsto \ & \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 2 & 3 \\
0 & 0 & 1 & 1
\end{bmatrix} \\ \\
\leadsto \ & \textcolor{gray}{第二行减去第三行的两倍} \\ \\
\leadsto \ & \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix} \\ \\
\leadsto \ & \textcolor{gray}{交换第一行和第二行} \\ \\
\leadsto \ & \begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix} \\ \\
\leadsto \ & \textcolor{gray}{第二行减去第一行} \\ \\
\leadsto \ & \begin{bmatrix}
\textcolor{orange}{\boldsymbol{\alpha}_{1}} & \textcolor{orange}{\boldsymbol{\alpha}_{2}} & \textcolor{orange}{\boldsymbol{\alpha}_{3}} & \textcolor{lightgreen}{\boldsymbol{\beta}_{3}} \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix} \\ \\
\end{aligned}
$$

由于上面得到的矩阵已经化简得很简单,所以,可以直接观察得到:

$$
\textcolor{lightgreen}{
\boldsymbol{\beta}_{3} = \boldsymbol{\alpha}_{1} – \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}
}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

无穷小夹逼定理:两个等价无穷小之间只存在等价无穷小

一、前言 前言 - 荒原之梦

已知,当 $x \rightarrow 0$ 的时候,$f(x)$ 和 $g(x)$ 是等价无穷小,即:

$$
f(x) \sim g(x)
$$

那么,如果 $\xi \in (f(x), g(x))$, 则 $\lim_{x \rightarrow 0} \xi$ 和 $\lim_{x \rightarrow 0} f(x)$ 之间是等价无穷小的关系吗?

继续阅读“无穷小夹逼定理:两个等价无穷小之间只存在等价无穷小”

2019年考研数二第21题解析:拉格朗日中值定理、罗尔定理、费马引理、积分的几何意义、反证法(5种解法+18幅图)

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2019年考研数二第21题解析:拉格朗日中值定理、罗尔定理、费马引理、积分的几何意义、反证法(5种解法+18幅图)”

2019年考研数二第20题解析:二元函数偏导数、一阶偏导数、二阶偏导数

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2019年考研数二第20题解析:二元函数偏导数、一阶偏导数、二阶偏导数”

2019年考研数二第19题解析:波纹函数、定积分累加求和、等比数列

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2019年考研数二第19题解析:波纹函数、定积分累加求和、等比数列”

2019年考研数二第18题解析:利用对称性和极坐标求解二重定积分

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2019年考研数二第18题解析:利用对称性和极坐标求解二重定积分”

2022考研数二第04题解析:二元偏导数、变上限积分求导

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2022考研数二第04题解析:二元偏导数、变上限积分求导”

2022考研数二第03题解析:邻域内函数单调性与凹凸性的判断

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2022考研数二第03题解析:邻域内函数单调性与凹凸性的判断”

2022考研数二第02题解析:更改积分次序、定积分中的变量替换

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2022考研数二第02题解析:更改积分次序、定积分中的变量替换”

2022考研数二第01题解析:等价无穷小相减会产生更高阶的无穷小,反之也成立

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2022考研数二第01题解析:等价无穷小相减会产生更高阶的无穷小,反之也成立”

2023年考研数二第21题解析:泰勒公式、存在性的理解

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2023年考研数二第21题解析:泰勒公式、存在性的理解”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress