2019年考研数二第20题解析:波纹函数、定积分累加求和、等比数列

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

首先,由 $u(x, y)$ $=$ $v(x, y) \mathrm{e}^{ax + by}$ 可得:

$$
\begin{aligned}
\textcolor{orange}{ \frac{\partial u}{\partial x} } & = \textcolor{orange}{ \frac{\partial v}{\partial x} \mathrm{e}^{a x + b y} + a v \mathrm{e}^{a x + b y} } \\ \\
\textcolor{lightgreen}{ \frac {\partial u}{\partial y} } & = \textcolor{lightgreen}{ \frac{\partial v}{\partial y} \mathrm{e}^{a x + b y} + b v \mathrm{e}^{a x + b y} } \\ \\
\textcolor{magenta}{ \frac{\partial^{2} u}{\partial x^{2}} } & = \textcolor{magenta}{ \frac{\partial^{2} v}{\partial x^{2}} \mathrm{e}^{a x + b y} + 2 a \frac{\partial v}{\partial x} \mathrm{e}^{a x + b y} + a^{2} v \mathrm{e}^{a x + b y} } \\ \\
\textcolor{lightblue}{ \frac{\partial^{2} u}{\partial y^{2}} } & = \textcolor{lightblue}{ \frac{\partial^{2} v }{\partial y^{2}} \mathrm{e}^{a x + b y} + 2 b \frac{\partial v}{\partial y} \mathrm{e}^{a x + b y} + b^{2} v \mathrm{e}^{a x + b y} }
\end{aligned}
$$

将上面的计算结果,代入 $2 \frac{\partial^{2} u}{\partial x^{2}}$ $-$ $2 \frac{\partial^{2} u}{\partial y^{2}}$ $+$ $3 \frac{\partial u}{\partial x}$ $+$ $3 \frac{\partial u}{\partial y}$ $=$ $0$, 可得:

$$
\begin{aligned}
& 2 \times \textcolor{magenta}{ \frac{\partial^{2} u}{\partial x^{2}} } – 2 \times \textcolor{lightblue}{ \frac{\partial^{2} u}{\partial y^{2}} } + 3 \times \textcolor{orange}{ \frac{\partial u}{\partial x} } + 3 \times \textcolor{lightgreen}{ \frac{\partial u}{\partial y} } = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 2 \times \left( \textcolor{magenta}{ \frac{\partial^{2} v}{\partial x^{2}} \mathrm{e}^{a x + b y} + 2 a \frac{\partial v}{\partial x} \mathrm{e}^{a x + b y} + a^{2} v \mathrm{e}^{a x + b y} } \right) – \\
& 2 \times \left( \textcolor{lightblue}{ \frac{\partial^{2} v }{\partial y^{2}} \mathrm{e}^{a x + b y} + 2 b \frac{\partial v}{\partial y} \mathrm{e}^{a x + b y} + b^{2} v \mathrm{e}^{a x + b y} } \right) + \\
& 3 \times \left( \textcolor{orange}{ \frac{\partial v}{\partial x} \mathrm{e}^{a x + b y} + a v \mathrm{e}^{a x + b y} } \right) + \\
& 3 \times \left( \textcolor{lightgreen}{ \frac{\partial v}{\partial y} \mathrm{e}^{a x + b y} + b v \mathrm{e}^{a x + b y} } \right) = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 2 \times \left( \textcolor{magenta}{ \frac{\partial^{2} v}{\partial x^{2}} } \textcolor{gray}{ \mathrm{e}^{a x + b y} } + \textcolor{magenta}{ 2 a \frac{\partial v}{\partial x} } \textcolor{gray}{ \mathrm{e}^{a x + b y} } + \textcolor{magenta}{ a^{2} v } \textcolor{gray}{ \mathrm{e}^{a x + b y} } \right) – \\
& 2 \times \left( \textcolor{lightblue}{ \frac{\partial^{2} v }{\partial y^{2}} } \textcolor{gray}{ \mathrm{e}^{a x + b y} } + \textcolor{lightblue}{ 2 b \frac{\partial v}{\partial y} } \textcolor{gray}{ \mathrm{e}^{a x + b y} } + \textcolor{lightblue}{ b^{2} v } \textcolor{gray}{ \mathrm{e}^{a x + b y} } \right) + \\
& 3 \times \left( \textcolor{orange}{ \frac{\partial v}{\partial x} } \textcolor{gray}{ \mathrm{e}^{a x + b y} } + \textcolor{orange}{ a v } \textcolor{gray}{ \mathrm{e}^{a x + b y} } \right) + \\
& 3 \times \left( \textcolor{lightgreen}{ \frac{\partial v}{\partial y} } \textcolor{gray}{ \mathrm{e}^{a x + b y} } + \textcolor{lightgreen}{ b v } \textcolor{gray}{ \mathrm{e}^{a x + b y} } \right) = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 2 \times \left( \textcolor{magenta}{ \frac{\partial^{2} v}{\partial x^{2}} } + \textcolor{magenta}{ 2 a \frac{\partial v}{\partial x} } + \textcolor{magenta}{ a^{2} v } \right) – \\
& 2 \times \left( \textcolor{lightblue}{ \frac{\partial^{2} v }{\partial y^{2}} } + \textcolor{lightblue}{ 2 b \frac{\partial v}{\partial y} } + \textcolor{lightblue}{ b^{2} v } \right) + \\
& 3 \times \left( \textcolor{orange}{ \frac{\partial v}{\partial x} } + \textcolor{orange}{ a v } \right) + \\
& 3 \times \left( \textcolor{lightgreen}{ \frac{\partial v}{\partial y} } + \textcolor{lightgreen}{ b v } \right) = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 2 \times \textcolor{magenta}{ \frac{\partial^{2} v }{\partial x^{2}} } – 2 \times \textcolor{lightblue}{ \frac{\partial^{2} v}{\partial y^{2}} } + \left( 4a + 3 \right) \times \textcolor{orange}{ \frac{\partial v}{\partial x} } + \left( 3 – 4b \right) \times \textcolor{lightgreen}{ \frac{\partial v}{\partial y} } + \\
& \left(2a^{2} – 2b^{2} + 3a + 3b \right) \times v = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 2 \times \frac{\partial^{2} v }{\partial x^{2}} – 2 \times \frac{\partial^{2} v}{\partial y^{2}} + \textcolor{red}{ \cancel{\textcolor{yellow}{\left( 4a + 3 \right) } \textcolor{white}{\times} \textcolor{white}{ \frac{\partial v}{\partial x}}} } + \textcolor{red}{\cancel{\textcolor{yellow}{\left( 3 – 4b \right) } \textcolor{white}{\times} \textcolor{white}{ \frac{\partial v}{\partial y}}}} + \\
& \left(2a^{2} – 2b^{2} + 3a + 3b \right) \times v = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{cases}
\textcolor{yellow}{4a + 3} = \textcolor{yellow}{0} \\
\textcolor{yellow}{3 – 4b} = \textcolor{yellow}{0}
\end{cases} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{cases}
\boldsymbol{\textcolor{green}{a} = \textcolor{green}{\frac{-3}{4}}} \\
\boldsymbol{\textcolor{green}{b} = \textcolor{green}{\frac{3}{4}}}
\end{cases}
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress