一、题目
$\lim_{x \rightarrow 0}$ $(\frac{1-\tan x}{1+\tan x})^{\frac{1}{\sin kx}}$ $=$ $e$, 则 $k$ $=$__.
二、解析
观察本题可以发现,这是一个求极限的式子,而且等式的右边是 $e$, 符合“两个重要极限”中的第二个重要极限的一部分特征。
两个重要极限如下:
$\lim_{x \rightarrow x_{x_{0}}}$ $\frac{\sin x}{x}$ $=$ $1$, $\lim_{x \rightarrow 0}$ $(1+x)^{\frac{1}{x}}$ $=$ $\lim_{x \rightarrow \infty}$ $(1+\frac{1}{x})^{x}$ $=$ $e$.
由于题目中的式子不存在上述公式中的 $1$, 因此,我们需要构造出这个 $1$, 即:
$1$ $+$ $\square$ $=$ $\frac{1-\tan x}{1+\tan x }$ $\Rightarrow$ $\square$ $=$ $\frac{1-\tan x}{1+\tan x}$ $-$ $1$ $=$ $\frac{1-\tan x}{1+\tan x}$ $-$ $\frac{1+\tan x}{1+\tan x}$ $=$ $\frac{-2 \tan x}{1+\tan x}$.
于是,原式 $=$ $\lim_{x \rightarrow 0}$ $(1+\frac{-2\tan x}{1+\tan x})^{\frac{1}{\sin kx}}$ $=$ $e$. (1)
由于当 $x$ $\rightarrow$ $0$ 时,$\frac{-2\tan x}{1+\tan x}$ $\rightarrow$ $0$ 且 $\frac{1}{\sin kx}$ $\rightarrow$ $\infty$, 所以,符合使用“两个重要极限”的条件,可以继续接下来的计算。
接下来继续向公式的方向构造等式。
$(1)$ $=$ $\lim_{x \rightarrow 0}$ $(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x} \frac{-2\tan x}{1+\tan x} \frac{1}{\sin kx}}$. (2)
根据公式,我们知道:
$\lim_{x \rightarrow 0}$ $(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x}}$ $=$ $e$.
于是:
$(2)$ $=$ $e^{\lim_{x \rightarrow 0} \frac{-2\tan x}{1+\tan x}\frac{1}{\sin kx}}$ $=$ $e^{\lim_{x \rightarrow 0} \frac{-2\tan x}{(1+\tan x)\sin kx}}$. (3)
当 $x$ $\rightarrow$ $0$ 时,$\tan x$ $\rightarrow$ $0$ 是不可以带入原式中的(只有非零和非无穷的数值可以带入原式中。),不过当 $x$ $\rightarrow$ $0$ 时,$(1+\tan x)$ $\rightarrow$ $1$ 是可以带入原式中的,于是:
$\lim_{x \rightarrow 0}$ $\frac{-2\tan x}{(1+\tan x)\sin kx}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{-2\tan x}{\sin kx}$.
又因为当 $x$ $\rightarrow$ $0$ 时,$\sin x$ $\sim$ $\tan x$ $\sim x$, 于是:
$\lim_{x \rightarrow 0}$ $\frac{-2\tan x}{\sin kx}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{-2x}{kx}$ $=$ $-\frac{2}{k}$.
即:
$e^{-\frac{2}{k}}$ $=$ $e$ $\Rightarrow$ $-$ $\frac{2}{k}$ $=$ $1$ $\Rightarrow$ $k$ $=$ $-$ $2$.
综上可知,正确答案是:$-2$.
EOF