有理化的两种计算方式:保无穷大或者舍无穷小

一、题目题目 - 荒原之梦

$$
\lim_{x \rightarrow + \infty} \big( \sqrt{x^{2} + x} – \sqrt{x^{2} – x} \big) = ?
$$

难度评级:

 graph TB
	A(无理式) --> B(分子有理化)
	B --> C1(保留较大的无穷大)
	B --> C2(舍去较小的无穷小)
	C1 --> D(解出答案)
	C2 --> D
继续阅读“有理化的两种计算方式:保无穷大或者舍无穷小”

两种方法计算:$\lim_{x \rightarrow \infty}$ $($ $\sin \frac{2}{x}$ $+$ $\cos \frac{1}{x}$ $)^{x}$

一、题目题目 - 荒原之梦

$$
\lim_{x \rightarrow \infty} \big( \sin \frac{2}{x} + \cos \frac{1}{x} \big)^{x} = ?
$$

难度评级:

 graph TB
	A(求极限) --> B(幂指函数)
	A --> C(1 的无穷次幂)
	A --> D(等价无穷小)
	B --> E(规划解题方法)
	C --> E
	D --> E
	E --> F(1 的无穷次幂等于 e)
	E --> G(e 抬起)
继续阅读“两种方法计算:$\lim_{x \rightarrow \infty}$ $($ $\sin \frac{2}{x}$ $+$ $\cos \frac{1}{x}$ $)^{x}$”

$y^{\prime \prime}$ $-$ $3 y^{\prime}$ $+$ $2 y$ $=$ $3x$ $-$ $2 e^{x}$ 特解的形式是多少?

一、题目题目 - 荒原之梦

微分方程 $y^{\prime \prime}$ $-$ $3 y^{\prime}$ $+$ $2 y$ $=$ $3x$ $-$ $2 e^{x}$ 特解的形式是( )

难度评级:

继续阅读“$y^{\prime \prime}$ $-$ $3 y^{\prime}$ $+$ $2 y$ $=$ $3x$ $-$ $2 e^{x}$ 特解的形式是多少?”

微分方程 $y^{\prime \prime}$ $+$ $4 y$ $=$ $\cos 2x$ 的通解是多少?

一、题目题目 - 荒原之梦

微分方程 $y^{\prime \prime}$ $+$ $4 y$ $=$ $\cos 2x$ 的通解是( )

难度评级:

 graph TB
	A(判断方程类型) --> B(二阶非齐次) --> C(确定右端项的类型) --> D(求出特征值)
	D --> E(设出非齐次特解的形式)
	D --> F(设出齐次通解的形式)
	E --> G(确定能确定的系数)
	G --> H(非齐通=齐通+非齐特)
	F --> H
继续阅读“微分方程 $y^{\prime \prime}$ $+$ $4 y$ $=$ $\cos 2x$ 的通解是多少?”

求三阶微分方程 $y^{\prime \prime \prime}$ $+$ $y^{\prime \prime}$ $-$ $y^{\prime}$ $-$ $y$ $=$ $0$ 满足指定初值的特解 $y^{*}$

一、题目题目 - 荒原之梦

求三阶微分方程 $y^{\prime \prime \prime}$ $+$ $y^{\prime \prime}$ $-$ $y^{\prime}$ $-$ $y$ $=$ $0$ 满足指定初值 $y(0)$ $=$ $4$, $y^{\prime}(0)$ $=$ $4$, $y^{\prime \prime}(0)$ $=$ $0$ 的特解 $y^{*}$.

难度评级:

 graph TB
	A(判断方程类型) --> B(三阶常系数齐次) --> C(求出特征值) --> D(根据公式确定通解的形式) --> E(代入条件求出待定常数) --> F(写出特解)
继续阅读“求三阶微分方程 $y^{\prime \prime \prime}$ $+$ $y^{\prime \prime}$ $-$ $y^{\prime}$ $-$ $y$ $=$ $0$ 满足指定初值的特解 $y^{*}$”

求微分方程 $\frac{\mathrm{d} y}{\mathrm{d} x}$ $=$ $\frac{2xy – y^{2}}{x^{2} – 2xy}$ 满足指定条件的特解

一、题目题目 - 荒原之梦

求微分方程 $\frac{\mathrm{d} y}{\mathrm{d} x}$ $=$ $\frac{2xy – y^{2}}{x^{2} – 2xy}$ 满足 $y(1)$ $=$ $-2$ 的特解。

难度评级:

graph TB
	A(判断方程类型) --> B(一阶齐次) --> C(构造出 y/x) --> D(代入条件求出待定常数) --> E(写出特解)
继续阅读“求微分方程 $\frac{\mathrm{d} y}{\mathrm{d} x}$ $=$ $\frac{2xy – y^{2}}{x^{2} – 2xy}$ 满足指定条件的特解”

变限积分+微分方程:已知 $f(x)$ $=$ $\int_{0}^{x}$ $\left( x^{2} – t^{2} \right)$ $f^{\prime}(t)$ $\mathrm{d} t$ $+$ $x^{2}$ 求 $f(x)$

一、题目题目 - 荒原之梦

已知函数 $f(x)$ 具有连续的一阶导数, 且满足 $f(x)$ $=$ $\int_{0}^{x}$ $\left(x^{2} – t^{2} \right)$ $f^{\prime}(t)$ $\mathrm{d} t$ $+$ $x^{2}$, 求 $f(x)$ 的表达式。

难度评级:

继续阅读“变限积分+微分方程:已知 $f(x)$ $=$ $\int_{0}^{x}$ $\left( x^{2} – t^{2} \right)$ $f^{\prime}(t)$ $\mathrm{d} t$ $+$ $x^{2}$ 求 $f(x)$”

求解方程 $y^{\prime \prime}$ $-$ $2 y^{\prime}$ $=$ $x \mathrm{e}^{2 x}$ 特解的形式

一、题目题目 - 荒原之梦

方程 $y^{\prime \prime}$ $-$ $2 y^{\prime}$ $=$ $x \mathrm{e}^{2 x}$ 特解的形式是( )

难度评级:

本题所用到的知识可以参考:《用待定系数法求解非齐次线性方程特解时特解的假设方法

继续阅读“求解方程 $y^{\prime \prime}$ $-$ $2 y^{\prime}$ $=$ $x \mathrm{e}^{2 x}$ 特解的形式”

求解具有特解 $y_{1}$ $=$ $\mathrm{e}^{-x}$, $y_{2}$ $=$ $2 x$ $\mathrm{e}^{-x}$, $y_{3}$ $=$ $3 \mathrm{e}^x$ 的三阶常系数线性齐次方程

一、题目题目 - 荒原之梦

具有特解 $y_{1}$ $=$ $\mathrm{e}^{-x}$, $y_{2}$ $=$ $2 x$ $\mathrm{e}^{-x}$, $y_{3}$ $=$ $3 \mathrm{e}^x$ 的三阶常系数线性齐次方程为( )

继续阅读“求解具有特解 $y_{1}$ $=$ $\mathrm{e}^{-x}$, $y_{2}$ $=$ $2 x$ $\mathrm{e}^{-x}$, $y_{3}$ $=$ $3 \mathrm{e}^x$ 的三阶常系数线性齐次方程”

差之毫厘,谬以千里:$\int$ $\frac{1+x}{1+x^{3}}$ $\mathrm{d} x$ 和 $\int$ $\frac{1-x}{1+x^{3}}$ $\mathrm{d} x$

一、题目题目 - 荒原之梦

$$
\int \frac{1+x}{1+x^{3}} \mathrm{d} x = ?
$$

$$
\int \frac{1-x}{1+x^{3}} \mathrm{d} x = ?
$$

这两个式子只相差了一个加减符号,但是计算得出的结果却有很大不同,因此,在求解数学题的时候,一定不能想当然的以为就该有什么样的结果——得出的任何结论都要建立在有效的定理和严格的推理之上。

难度评级:

继续阅读“差之毫厘,谬以千里:$\int$ $\frac{1+x}{1+x^{3}}$ $\mathrm{d} x$ 和 $\int$ $\frac{1-x}{1+x^{3}}$ $\mathrm{d} x$”

求解 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4y$ $=$ $e^{-2x}$ 满足指定条件的特解

一、题目题目 - 荒原之梦

方程 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4y$ $=$ $e^{-2x}$ 满足 $y(0)$ $=$ $0$, $y^{\prime}(0)$ $=$ $1$ 的特解是多少?

难度评级:

继续阅读“求解 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4y$ $=$ $e^{-2x}$ 满足指定条件的特解”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress