一、前言
在本文中,「荒原之梦考研数学」将为同学们总结整理被积函数中含有 “$ax$ $+$ $b$” 以及相关变形形式的积分,这些不是基础的积分公式,也不是一般的习题,但可以作为同学们对积分解题方法的积累。
继续阅读“考研数学常用积分之:含有 $a x$ $+$ $b$ 的积分”在本文中,「荒原之梦考研数学」将为同学们总结整理被积函数中含有 “$ax$ $+$ $b$” 以及相关变形形式的积分,这些不是基础的积分公式,也不是一般的习题,但可以作为同学们对积分解题方法的积累。
继续阅读“考研数学常用积分之:含有 $a x$ $+$ $b$ 的积分”泰勒公式有很多用处,例如求解函数的 $n$ 阶导。如果大家想要掌握泰勒展开式的整体计算公式,可以查阅「荒原之梦考研数学」的《用逐步简化的方法记忆泰勒公式》这篇文章。在本文中,「荒原之梦考研数学」将为同学们提供考研数学中常见的一些在 $x_{0}$ $=$ $0$ 处的泰勒展开式,或者说常见的麦克劳林公式。
继续阅读“考研数学常用的泰勒公式(麦克劳林公式)汇总”在高等数学的学习中,我们会遇到两种“零”:等于零($= 0$)和趋于零($\rightarrow 0$)。
那么,在计算的时候,这两种“零”有哪些不同点和相同点呢?在本文中,「荒原之梦考研数学」就给同学们详细讲解这一知识点。
继续阅读“数字零和极限零有什么区别?”在计算的时候,一个数字是大于 $1$, 还是小于 $1$ 可能对应着不同的结果,在本文中,「荒原之梦考研数学」就给大家列举一些常见的情况,以便同学们在做题的时候加以注意。
继续阅读“大于 1 和小于 1 大不相同”考场上的每一分每一秒都很关键,所以,在保证正确的情况下,做题速度越快,竞争优势也就越大。为此,「荒原之梦考研数学」为同学们总结归纳了对含有 $\textcolor{orange}{\mathbf{e}} ^{x}$ 或者 $\textcolor{orange}{\mathbf{e}} ^{kx}$ 的多项式(其中 $k$ 为常数)进行求导的快速方法。
继续阅读“对含有 e 的式子进行快速求导的方法”在考研高等数学中,我们会接触到很多种积分符号,这些积分符号有着各自的书写方式与含义。在本文中,「荒原之梦考研数学」就汇总常见的积分符号及其含义,在文末还有一段积分符号的历史介绍给大家哦~
继续阅读“考研数学中各种积分符号的写法与含义汇总”「荒原之梦考研数学」的这篇文章的标题看上去很“无聊”,因为现在正在看这篇文章的同学,几乎不会有人不知道怎么展开 $(a + b) ^{2}$.
那么,这篇文章的目的是什么呢?
其实,这篇文章只是想表达:
在考研数学的学习中,我们只要能保证遵守最基本的定理逻辑,在定理形式的理解和表达上,就可以自己怎么喜欢怎么来,怎么方便怎么来。
继续阅读“a+b 的平方到底该怎么展开?”首先给出结论:
$$
\tan (\arccos x) = \frac{\sqrt{1 – x ^{2}}}{x}
$$
接下来「荒原之梦考研数学 – zhaokaifeng.com」网将给出对上述结论的详细证明。
首先是本文的结论:
$$
\tan (\arcsin x) = \frac{x}{\sqrt{1 – x ^{2}}}
$$
接下来,「荒原之梦考研数学 | zhaokaifeng.com」将给出有关上面这个结论的详细证明过程。
在本文中,荒原之梦考研数学将通过图示的方式,给大家阐述清楚数列的有界、发散、收敛这三个概念之间的异同点,方便大家在其他辅导资料中常见的定义和举特例的方式之外,用更加形象的方式理解这三者之间的区别。
继续阅读“图示:数列的有界、发散与收敛间的区别与联系”Tip
在本的示意图中:
zhaokaifeng.com
[1]. 横坐标表示数列的项数 $n$, 从左向右依次增大;
[2]. 纵坐标表示数列的值 $\left\{ x_{n} \right\}$, 从下到上依次增大;
[3]. 同一个坐标系中不同颜色的点对应的项数 $n$ 不相等,但都属于同一个数列 $\left\{ x_{n} \right\}$
已知有数列 $\left\{ x _{ n } \right\}$ 和 $\left\{ y _{ n } \right\}$, 那么,这两个数列的乘积数列 $\left\{ x _{ n } y _{ n } \right\}$ 的敛散性该怎么判断?
在本文中,荒原之梦考研数学就将通过一些例子,给同学们讲明白上述这个问题。
继续阅读“数列乘积极限的相关结论”我们知道,泰勒公式不仅能近似表示某个展开点处的函数情况,还能够近似表示该展开点周围一定范围内的被展开点的处的函数情况(相关文章可以参考这里)。
那么,在本文中,荒原之梦考研数学将通过比较函数 $f(x)$ $=$ $e ^{x}$ 在 $x = 0$ 处的原函数与泰勒展开式所构成的函数,用图示的方法让大家更直观清晰的理解泰勒定理中展开点与被展开点的情况。
继续阅读“泰勒定理的展开点及附近邻域内被展开点的情况(图示)”虽然我们常常用泰勒展开式来“拟合”函数在“ 一 点 处 ”的情况,但是,泰勒展开式其实是具备描述函数在“ 一 点 处 附 近 ”的情况这个能力的,下面就跟随「荒原之梦考研数学」一起,看看这是为啥吧。
继续阅读“泰勒公式并不是只能近似表示函数在一点处的情况,还能近似表示一个较小区间内函数的情况”在涉及极限运算的题目中,我们需要特别注意左极限和右极限的问题,因为这两个极限有可能是不相等的。
在本文中,「荒原之梦考研数学」就对高等数学中常用的左右极限不相等的例子做一个汇总,并通过图示的形式加深同学们对这些例子的理解和掌握。
继续阅读“常用的左右极限汇总(图示)”