怎么把一个级数拆分成正项和负项两部分?

一、前言

在研究级数的条件收敛和绝对收敛等问题的时候,我们常常需要对级数的正项和负项分别做考虑. 那么,怎么将一个级数的正项和负项表示出来呢?级数的正项和负项和原来的级数之间又具有什么样的关系呢?在本文中,「荒原之梦考研数学」将为同学们做一个详细的讲解.

继续阅读“怎么把一个级数拆分成正项和负项两部分?”

单重求和转一重积分,双重求和转二重积分

一、前言

在本文中,「荒原之梦考研数学」将通过两道题目给同学们展示一下如何将“求和”转为“积分”,内容涵盖考研数学中常考的一重求和转一重积分,以及二重求和转二重积分.

继续阅读“单重求和转一重积分,双重求和转二重积分”

向量加法满足交换律与结合律的图形证明

一、前言

我们知道,数字的加法是满足交换律与结合律的,事实上,向量的加法也满足交换律与结合律.

但是,由于向量比数字更加复杂一些,所以,我们可能难以直接感受到向量所具有的满足交换律与结合律的性质.

所以,在本文中,「荒原之梦考研数学」就通过图示的方式,以及原创的基于圆形的证明,让同学们对向量的交换律与结合律有一个直观的理解.

继续阅读“向量加法满足交换律与结合律的图形证明”

平时所说的收敛是绝对收敛还是条件收敛?

一、前言

要讨论收敛是绝对收敛还是条件收敛,我们首先要明确的是:谁收敛?

在考研数学中,可能具有收敛属性的主要概念为:级数、反常积分、数列和函数.

在本文中,我们将围绕这一问题,做一个清晰的分类探讨.

继续阅读“平时所说的收敛是绝对收敛还是条件收敛?”

两个收敛的级数逐项交替合并(隔项合并)后得到的级数也收敛

一、题目

继续阅读“两个收敛的级数逐项交替合并(隔项合并)后得到的级数也收敛”

借助向量工具研究数列隔项合并之后的敛散性

一、前言

在「荒原之梦考研数学」的文章《借助向量工具研究数列加减运算之后的敛散性》中,我们基于向量的视角研究了数列相加或者相减前后所表现出来的敛散性,并总结出了数列相加减的三角形定理和平行四边形定理.

在本文中,「荒原之梦考研数学」将基于上面的研究基础,继续借助向量语言,研究数列隔项合并之后的敛散性.

继续阅读“借助向量工具研究数列隔项合并之后的敛散性”

借助向量工具研究数列加减运算之后的敛散性

一、前言

在本文中,「荒原之梦考研数学」将借助“向量”这一工具,研究不同敛散性的两个数列相加或者相减之后所得数列的敛散性. 通过本文中基于向量对这一问题所进行的研究可以非常直观的看到加减运算对数列敛散性所产生的影响,并且可以根据三角形和平行四边形的几何特性对这些结论进行进一步的凝练总结.

继续阅读“借助向量工具研究数列加减运算之后的敛散性”

要使含有三角函数的数列的子列存在极限,则步长需要是三角函数周期的整数倍

一、题目题目 - 荒原之梦

已知 $a_{n} = \left(1 + \frac{1}{n} \right) \sin \frac{n \pi}{2}$, 请证明数列 ${ a_{n} }$ 没有极限(发散).

继续阅读“要使含有三角函数的数列的子列存在极限,则步长需要是三角函数周期的整数倍”

在一阶线性微分方程的求解公式中可以使用变限积分

一阶线性微分方程的求解公式一般都是用不定积分表示的,虽然这样的表达形式在很多情况下都适用,但在某些特殊情况下,我们则需要将公式中的部分不定积分更改为变限积分.

在本文中,「荒原之梦考研数学」将给同学们深入剖析一下将一阶线性微分方程中的部分不定积分写成变限积分的用途和原理,以及注意事项。

继续阅读“在一阶线性微分方程的求解公式中可以使用变限积分”

基于矢量乘法模型分析函数乘积平移的性质

在「荒原之梦」的文章《通过分类讨论分析函数乘积平移的性质》中,我们使用传统数学中符号推理的方式,研究了下面这个问题:

已知,函数 $\mathrm{Z}_{1}(x) = f(x) \cdot g(x)$, 接着,我们将函数 $g(x)$ 向左平移 $k$ 个单位,得到函数 $g(x+k)$, 那么,当函数 $f(x)$ 满足什么条件的时候,函数 $\mathrm{Z}_{2}(x) = f(x) \cdot g(x+k)$ 实际上可以看作是由函数 $\mathrm{Z}_{1}(x)$ 平移得到的呢?并且函数 $\mathrm{Z}_{1}(x)$ 向哪个方向平移了多少个单位得到了函数 $\mathrm{Z}_{2}(x)$ ?

在本文中,「荒原之梦」将对上面的问题进一步深入探讨,并用「荒原之梦」独创的图形推理的方式,研究以下三组函数的平移变换性质:

$$
\begin{aligned}
\mathbf{No.1} & \begin{cases}
\mathrm{Z}_{1}(x) = f(x) \cdot g(x) \\
\mathrm{Z}_{2}(x) = f(x) \cdot g(x + k)
\end{cases} \\ \\
\mathbf{No.2} & \begin{cases}
\mathrm{Z}_{3}(x) = f(x) \cdot g(x) \cdot h(x) \\
\mathrm{Z}_{4}(x) = f(x) \cdot g(x+k) \cdot h(x+l)
\end{cases} \\ \\
\mathbf{No.3} & \begin{cases}
\mathrm{Z}_{5}(x) = f(x) \cdot g(x) \cdot h(x) \\
\mathrm{Z}_{6}(x) = f(x) \cdot g(x+k) \cdot h(x-m)
\end{cases}
\end{aligned}
$$

其中,$k > 0$, $l > 0$, $m > 0$.

在本文中,我们将基于「荒原之梦」定义的“矢量乘法模型”这一工具,通过绘图的方式,直观地说明,当我们把函数 $\mathrm{Z}_{2}(x)$ 看作是由函数 $\mathrm{Z}_{1}(x)$ 沿着坐标系的 $X$ 轴左右平移得到的时候,函数 $f(x)$, $g(x)$ 和 $h(x)$ 需要具有什么样的性质,以及函数 $\mathrm{Z}_{i}(x)$(其中,$i$ $=$ $1,2,3,4,5,6$)左右平移的距离与函数 $g(x)$ 和 $h(x)$ 的左右平移距离之间具有什么样的关系。

继续阅读“基于矢量乘法模型分析函数乘积平移的性质”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress