一、题目
已知:
$$
\boldsymbol{A} = \begin{bmatrix}
0 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 0
\end{bmatrix}
$$
$$
\boldsymbol{B} = \begin{bmatrix}
3 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
$$
求可逆矩阵 $\boldsymbol{C}$, 使得下式成立:
$$
\boldsymbol{C}^{\top} \boldsymbol{A} \boldsymbol{C} = \boldsymbol{B}
$$
难度评级:
继续阅读“利用“对称初等变换”求解合同矩阵中的可逆矩阵 C”