一、题目
求下面函数的 $n$ 阶导数:
$$
\begin{aligned}
y_{1} & = \sin x \\
y_{2} & = \cos x \\
y_{3} & = \frac{1}{x + 1}
\end{aligned}
$$
难度评级:
继续阅读“用归纳法求函数的 $n$ 阶导数(附 $\sin$ 与 $\cos$ 的 $n$ 阶导公式)”求下面函数的 $n$ 阶导数:
$$
\begin{aligned}
y_{1} & = \sin x \\
y_{2} & = \cos x \\
y_{3} & = \frac{1}{x + 1}
\end{aligned}
$$
难度评级:
继续阅读“用归纳法求函数的 $n$ 阶导数(附 $\sin$ 与 $\cos$ 的 $n$ 阶导公式)”已知 $f(x,y,z)$ $=$ $\left( \frac{x}{y} \right)^{\frac{1}{z}}$, 则:
$$
\mathrm{d} f(1,1,1) = ?
$$
难度评级:
继续阅读“三元函数全微分的计算:比二元多一元”已知函数 $u$ $=$ $f \left( x + y , x y , \frac { x } { y } \right)$, 求 $\frac{\partial^{2} u}{\partial x^{2} }$, $\frac { \partial^{2} u }{ \partial x \partial y }$, $\frac{ \partial^{2} u }{\partial y^{2}}$.
其中,$f$ 具有二阶连续偏导数。
难度评级:
继续阅读“二阶偏导数求导对比:两个变量的三元函数和三个变量的二元函数”$$
\begin{aligned}
I_{1} = & \ \lim_{x \to \infty} \left( \frac{x+2}{x + 1} \right)^{2x + \textcolor{orangered}{2}} = ? \\ \\
I_{2} = & \ \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{2x + \textcolor{orangered}{1}} = ?
\end{aligned}
$$
难度评级:
继续阅读“在无穷大条件下,幂指函数的“幂”增减一个常数不会影响最终的结果”求和符号是我们在考研数学中很常见到的一个符号,常见的求和符号写法如下:
$$
\sum_{i=1}^{n=16}
$$
或者:
$$
\lim_{n \to \infty} \sum_{i=1}^{n}
$$
那么,我们应该怎么理解上面这个求和符号呢?以及该怎么让求和符合参与到具体的计算中呢?
在本文中,「荒原之梦考研数学」就给同学们讲解一下这个问题。
继续阅读“求和符号中的 $i$ 和 $n$ 有啥区别?”在考研数学中,用定积分的定义求解某些定积分或者数列的值,是一种很常见的考题。
假如我们要用定积分的定义求解区间 $[a, b]$ 上的积分值,我们应该以什么样的方式划分 $[a, b]$ 这个区间呢?
在本文中,「荒原之梦考研数学」就给同学们讲一讲上面这个问题。
继续阅读“用定积分的定义求解时怎么进行积分区间的分割?”我们知道,在题目的计算过程中,如果式子是分式,就有可能不利于我们进行计算。所以,为了简化计算,我们一般更倾向于简化分式中的分母,从而使该分式更接近于一般的式子,例如简化分母的次幂或者降低分母的复杂度。
在本文中,「荒原之梦考研数学」将给大家带来对于含有对数函数的分式的一种“去分母”解法。
继续阅读“含有对数函数的分式怎么计算”在高等数学(考研数学)中,我们为了判断某些题目,可能需要举一些反例,而在本文中,「荒原之梦考研数学」就给同学们带来三种比较特殊的函数,这些函数也是我们在寻找反例的时候,很容易用上的工具。
继续阅读“考研数学中需要注意的三种特殊的函数”已知 $x_{1}$, $x_{2}$, $\cdots$, $x_{n}$ 为 $n$ 个非负实数,则其几何平均值 $\sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}}$ 一定小于或等于其算术平均值 $\frac{x_{1} + x_{2} + \cdots + x_{n}}{n}$, 即:
$$
\begin{aligned}
& \sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}} \leqslant \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} \\ \\
\Rightarrow & \textcolor{springgreen}{ \ \sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leqslant \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} }
\end{aligned}
$$
在本文中,「荒原之梦考研数学」将使用数学归纳法和递推法两种方法为同学们证明上述不等式。
继续阅读“平均值不等式的详细证明过程”在本文中,「荒原之梦考研数学」将通过数字在乘法和减法中“牵制”能力的区别,简易地证明下式(数字的平均值相乘大于或等于每个数字相乘):
$$
\textcolor{yellow}{
\left( \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} \right)^{n} \geqslant x_{1} \times x_{2} \times \cdots \times x_{n}
}
$$
继续阅读“证明:数字的平均值相乘一定不小于每个数字相乘——小数字在乘法中对大数字的“牵制”程度比减法中严重”为了更便于理解,同学们可以将本文中的“牵制”理解为“拖累”——小数字对大数字的“拖累”效果在乘法中比在减法中变现更突出。
在本文中,「荒原之梦考研数学」将通过计算下面三个式子的导数 $\frac{\mathrm{d} y}{\mathrm{d} x}$ 的方式,给同学们讲清楚在对幂指函数求导时,什么时候用“$\mathrm{e}$ 抬起”,什么时候用“$\ln$ 落下”:
$$
\begin{aligned}
① \quad y = & \ x ^{\sin x} \\
② \quad y = & \ x^{\cos x} + x^{x} \\
③ \quad y = & \ x^{\cos x} \cdot x^{\sin x}
\end{aligned}
$$
在做题的时候,我们可能需要借助同时在等式的等号两边做某种操作的方式对原式进行变形处理,例如对等号两边同时取对数、同时求导、同时取倒数、同时乘以或者除以某个量等。
但是,在做这些操作的时候,我们必须要注意“对等原则”。所谓“对等原则”,就是等号两边无论各自有多少组成部分,都要以等号为界,分为两个整体,做任何操作,都要以这两个整体为基本单位进行。
接下来,「荒原之梦考研数学」将通过一些实际的例子,给同学们讲清楚这个计算过程中的易错点。
继续阅读“对等式等号两边同时做操作的时候要注意“对等原则””Note
换句话说,所谓“对等原则”要解决的问题就是:对等式两边取对数,是对整体“取”,还是各项“取”?
zhaokaifeng.com
在本文中,「荒原之梦考研数学」将为同学们总结整理被积函数中含有 “$ax$ $+$ $b$” 以及相关变形形式的积分,这些不是基础的积分公式,也不是一般的习题,但可以作为同学们对积分解题方法的积累。
继续阅读“考研数学常用积分之:含有 $a x$ $+$ $b$ 的积分”