一、前言
在做题的时候,我们有时候会遇到 $x \rightarrow 0^{+}$ 与 $x \rightarrow 0+0$ 这样的极限表示形式,那么,这两种不同的表示形式含义有区别吗?
在本文中,「荒原之梦考研数学」就为此给同学们做一个详细的讲解.
继续阅读“左极限和右极限的两种不同表示形式”在做题的时候,我们有时候会遇到 $x \rightarrow 0^{+}$ 与 $x \rightarrow 0+0$ 这样的极限表示形式,那么,这两种不同的表示形式含义有区别吗?
在本文中,「荒原之梦考研数学」就为此给同学们做一个详细的讲解.
继续阅读“左极限和右极限的两种不同表示形式”级数的收敛包含条件收敛和绝对收敛这两种可能的形式,所以,级数具有更复杂的性质与相关结论.
在本文中,「荒原之梦考研数学」会使用向量这一工具,以图形的方式,对收敛级数进行表述上的重新定义,并据此给出解释收敛级数性质的更简洁的推理与证明.
同时,在本文中,「荒原之梦考研数学」也想阐述这样一个观点,那就是:通过适当且合理的初始定义,有可能使得对问题的研究与对结论的理解变得非常直观和简洁.
继续阅读“绝对收敛与条件收敛级数及其性质的向量化图形证明”如果级数 $\sum a_{n}$ 绝对收敛,那么,构成其的正项级数 $\sum a_{n}^{+}$ 和负项级数 $\sum a_{n}^{-}$ 都收敛.
继续阅读“证明:绝对收敛的级数的正项和负项构成的新级数一定都收敛”如果级数 $\sum a_{n}$ 条件收敛,那么,构成其的正项级数 $\sum a_{n}^{+}$ 和负项级数 $\sum a_{n}^{-}$ 都发散.
继续阅读“证明:条件收敛的级数的正项和负项构成的新级数一定都发散”在研究级数的条件收敛和绝对收敛等问题的时候,我们常常需要对级数的正项和负项分别做考虑. 那么,怎么将一个级数的正项和负项表示出来呢?级数的正项和负项和原来的级数之间又具有什么样的关系呢?在本文中,「荒原之梦考研数学」将为同学们做一个详细的讲解.
继续阅读“怎么把一个级数拆分成正项和负项两部分?”如果我们有两个收敛级数(绝对收敛或者条件收敛),那么,他们相加所得的级数会具有什么性质呢?
在本文中,「荒原之梦考研数学」就通过分类讨论的方式给同学们讲解清楚这一问题.
继续阅读“收敛级数的加法运算性质”我们知道,数字的加法是满足交换律与结合律的,事实上,向量的加法也满足交换律与结合律.
但是,由于向量比数字更加复杂一些,所以,我们可能难以直接感受到向量所具有的满足交换律与结合律的性质.
所以,在本文中,「荒原之梦考研数学」就通过图示的方式,以及原创的基于圆形的证明,让同学们对向量的交换律与结合律有一个直观的理解.
继续阅读“向量加法满足交换律与结合律的图形证明”要讨论收敛是绝对收敛还是条件收敛,我们首先要明确的是:谁收敛?
在考研数学中,可能具有收敛属性的主要概念为:级数、反常积分、数列和函数.
在本文中,我们将围绕这一问题,做一个清晰的分类探讨.
继续阅读“平时所说的收敛是绝对收敛还是条件收敛?”在「荒原之梦考研数学」的文章《借助向量工具研究数列加减运算之后的敛散性》中,我们基于向量的视角研究了数列相加或者相减前后所表现出来的敛散性,并总结出了数列相加减的三角形定理和平行四边形定理.
在本文中,「荒原之梦考研数学」将基于上面的研究基础,继续借助向量语言,研究数列隔项合并之后的敛散性.
继续阅读“借助向量工具研究数列隔项合并之后的敛散性”在本文中,「荒原之梦考研数学」将借助“向量”这一工具,研究不同敛散性的两个数列相加或者相减之后所得数列的敛散性. 通过本文中基于向量对这一问题所进行的研究可以非常直观的看到加减运算对数列敛散性所产生的影响,并且可以根据三角形和平行四边形的几何特性对这些结论进行进一步的凝练总结.
继续阅读“借助向量工具研究数列加减运算之后的敛散性”已知级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_{n} = 2$, $\sum_{n=1}^{\infty} a_{2n-1} = 5$, 则级数 $\sum_{n=1}^{\infty} a_{n} = ?$
»A« $3$
»B« $7$
»C« $6$
»D« $8$
一阶线性微分方程的求解公式一般都是用不定积分表示的,虽然这样的表达形式在很多情况下都适用,但在某些特殊情况下,我们则需要将公式中的部分不定积分更改为变限积分.
在本文中,「荒原之梦考研数学」将给同学们深入剖析一下将一阶线性微分方程中的部分不定积分写成变限积分的用途和原理,以及注意事项。
继续阅读“在一阶线性微分方程的求解公式中可以使用变限积分”