一、题目
已知积分区域 $D$ $=$ $\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\}$, 求二重积分 $I$ $=$ $\iint_{D} \sqrt{1-x^{2}-y^{2}} \mathrm{~d} \sigma$.
难度评级:
继续阅读“转为极坐标系后,怎么确定新的积分上下限?”已知积分区域 $D$ $=$ $\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\}$, 求二重积分 $I$ $=$ $\iint_{D} \sqrt{1-x^{2}-y^{2}} \mathrm{~d} \sigma$.
难度评级:
继续阅读“转为极坐标系后,怎么确定新的积分上下限?”已知向量 $\alpha_{1} = \left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, $\alpha_{2}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$, $\beta_{1}=\left(\begin{array}{l}2 \\ 5 \\ 9\end{array}\right)$, $\beta_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. 若 $\gamma$ 既可由 $\alpha_{1}$, $\alpha_{2}$ 表示, 也可由
$\beta_{1}$, $\beta_{2}$ 表示, 则 $\gamma$ 为 ($\quad$)
(A) $k\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), k \in R$
(B) $k\left(\begin{array}{c}3 \\ 5 \\ 10\end{array}\right), k \in R$
(C) $k\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right), k \in R$
(D) $k\left(\begin{array}{l}1 \\ 5 \\ 8\end{array}\right), k \in R$
难度评级:
继续阅读“2023年考研数一第07题解析:一个向量能被其余向量表示就意味着这些向量可以组成一个线性方程组”设 $X$ 服从区间 $(-\frac{\pi}{2},\frac{\pi}{2})$ 上的均匀分布,$Y=\sin X$, 则 $Cov(X,Y)=$
继续阅读“2020年研究生入学考试数学一第14题解析”设随机变量 $X$ 服从参数为 $1$ 的泊松分布,则 $P {X=E(X^{2})}$ $=$__.
每年考研数学一试卷中填空题的最后一题基本都是考一个概率论中的知识。本题考察的知识很明确,就是:泊松分布。
泊松分布的概念如下:
设随机变量 $X$ 的概率分布为:
$P {X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $(\lambda>0,k=0,1,2,3 \dots)$
则称 $X$ 服从参数为 $\lambda$ 的泊松分布,记为 $X$ $\backsim$ $P(\lambda)$.
此外,在泊松分布中,数学期望 $E(X)$ $=$ $\lambda$, 方差 $D(X)$ $=$ $\lambda$.
最后,我们还需要知道 $E(X)$ 与 $D(X)$ 的关系公式:
$D(X)$ $=$ $E(X^{2})$ $-$ $[E(X)]^{2}$.
由题目信息可知,该题中泊松分布的参数 $\lambda=1$, 于是我们知道:
$E(X)$ $=$ $D(X)$ $=$ $1$.
由于题目中要求的表达式中含有 “$E(X^{2})$”, 而在 $E(X)$ 与 $D(X)$ 的关系式中也含有 “$E(X^{2})$”, 于是,我们有:
$E(X^{2})$ $=$ $D(X)$ $+$ $[E(X)]^{2}$.
进而有:
$E(X^{2})$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2$.
于是,我们要求的表达式就变成了:
$P{X=E(X^{2})}$ $\Rightarrow$ $P{X=2}$.
至此,我们已经知道了泊松分布的计算公式中的两个未知量的数值,分别是:
$\lambda$ $=$ $1$, $k$ $=$ $E(X^{2})$ $=$ $2$.
于是,根据泊松分布的计算公式,我们有:
$P$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\frac{1^{2}e^{-1}}{2!}$ $=$ $\frac{e^{-1}}{2 \times 1}$ $=$ $\frac{1}{e}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2e}$.
综上可知,正确答案就是:$\frac{1}{2e}$.
EOF
设 $A$, $B$ 为随机事件,若 $0$ $<$ $P(A)$ $<$ $1$, $0$ $<$ $P(B)$ $<$ $1$, 则 $P(A|B)$ $>$ $P(A|\bar{B})$ 的充分必要条件是 ( )
( A ) $P(B|A)$ $>$ $P(B|\bar{A})$.
( B ) $P(B|A)$ $<$ $P(B|\bar{A})$.
( C ) $P(\bar{B}|A)$ $>$ $P(B|\bar{A})$.
( D ) $P(\bar{B}|A)$ $<$ $p(B|\bar{A})$.
本题中要找的是“充分必要条件”。根据充分必要条件的含义我们知道,如果事件 $A$ 和 $B$ 要满足充要条件就要有 $A$ $\rightarrow$ $B$ 且 $B$ $\rightarrow$ $A$.
但是,如果满足以下情况,也可以确定 $A$ 与 $B$ 是互相的充要条件:
设有事件 $A$, $B$, $C$, 当存在以下情况:
$A$ $\rightarrow$ $C$ 且 $C$ $\rightarrow$ $A$ 且 $B$ $\rightarrow$ $C$ 且 $C$ $\rightarrow$ $B$, 则 $A$ 与 $B$ 是互相的充要条件。
对于本题而言,直接把题目中所给的形式 $P(A|B)$ $>$ $P(A|\bar{B})$ 转换成选项中所给的形式,以及把选项中的形式转换成题目中所给的形式,可能难度比较大。这里我们可以考虑化简题目中所给的形式,之后再化简选项中所给的形式,由于化简过程中都是全程使用的等价符号,因此化简前的原式和化简后得到的形式是互为充要条件的,如果选项中的化简结果和题目中的化简结果一样,则可以说明它们之间存在互为充要条件的关系。
首先对题目中的原式进行化简,根据条件概率的公式,我们有:
$P(A|B)$ $>$ $P(A|\bar{B})$ $\Rightarrow$ $\frac{P(AB)}{P(B)}$ $>$ $\frac{P(A \bar{B})}{P(\bar{B})}$.
又因为:
$P(A \bar{B})$ $=$ $P[A(1-B)]$ $=$ $P(A-AB)$ $=$ $P(A)$ $-$ $P(AAB)$ $=$ $P(A)$ $-$ $P(AB)$.
所以有:
原式 $\Rightarrow$ $\frac{P(AB)}{P(B)}$ $>$ $\frac{P(A) – P(AB)}{1-P(B)}$ $\Rightarrow$ $P(AB)[1-P(B)]$ $>$ $P(B)[P(A)-P(AB)]$ $\Rightarrow$ $P(AB)$ $-$ $P(AB)P(B)$ $>$ $P(B)P(A)$ $-$ $P(B)P(AB)$ $\Rightarrow$ $P(AB)$ $>$ $P(A)P(B)$.
接下来,通过观察题目我们知道,$A$ 选项和 $B$ 选项的区别只是大于和小于符号,$C$ 选项和 $D$ 选项的区别也是如此。因此,我们只需要分别对 $A$ 选项和 $C$ 选项进行计算就可以确定哪个是正确选项了。
对 $A$ 选项进行化简:
$P(B|A)$ $>$ $P(B|\bar{A})$ $\Rightarrow$ $\frac{P(AB)}{P(A)}$ $>$ $\frac{P( \bar{A} B)}{P(\bar{A})}$.
又因为:
$P(\bar{A}B)$ $=$ $P[(1-A)B]$ $=$ $P(B-AB)$ $=$ $P(B)$ $-$ $P(ABB)$ $=$ $P(B)$ $-$ $P(AB)$.
所以有:
$\frac{P(AB)}{P(A)}$ $>$ $\frac{P(B) – P(AB)}{1-P(A)}$ $\Rightarrow$ $P(AB)[1-P(A)]$ $>$ $P(A)[P(B)$ $-$ $P(AB)]$ $\Rightarrow$ $P(AB)$ $-$ $P(AB)P(A)$ $>$ $P(A)P(B)$ $-$ $P(A)P(AB)$ $\Rightarrow$ $P(AB)$ $>$ $P(A)P(B)$.
由此,我们知道,$A$ 选项对,$B$ 选项错。
为了保险起见,我们可以在对 $C$ 选项做一个计算:
$P(\bar{B}|A)$ $>$ $P(B| \bar{A})$ $\Rightarrow$ $\frac{P(A \bar{B})}{P(A)}$ $>$ $\frac{P(\bar{A}B)}{P(\bar{A})}$ $\Rightarrow$ $P(A \bar{B})P(\bar{A})$ $>$ $P(\bar{A}B)P(A)$.
又因为:
$P(A \bar{B})$ $=$ $P(A)$ $-$ $P(AB)$;
$P(\bar{A} B)$ $=$ $P(B)$ $-$ $P(AB)$.
所以有:
$[P(A)$ $-$ $P(AB)][1-P(A)]$ $>$ $[P(B)$ $-$ $P(AB)]P(A)$ $\Rightarrow$ $P(A)$ $-$ $P(A)P(A)$ $-$ $P(AB)$ $+$ $P(AB)P(A)$ $>$ $P(B)P(A)$ $-$ $P(AB)P(A)$ $\nRightarrow$ $P(AB)$ $>$ $P(A)P(B)$.
因此,可以知道,选项 $C$ 和 $D$ 都不正确。
综上可知,正确选项是:$A$.
EOF