一、题目
$$
\begin{aligned}
& I = \\ \\
& \lim _{ x \rightarrow 0 } \frac { \cos 2 x – \cos x } { x ^ { 2 } } \\ \\
& = ?
\end{aligned}
$$
难度评级:
继续阅读“有些无穷小虽然是无穷小,但却不能用无穷小的相关公式”$$
\begin{aligned}
& I = \\ \\
& \lim _{ x \rightarrow 0 } \frac { \cos 2 x – \cos x } { x ^ { 2 } } \\ \\
& = ?
\end{aligned}
$$
难度评级:
继续阅读“有些无穷小虽然是无穷小,但却不能用无穷小的相关公式”
所有的丰沃都是用汗水浇灌的,每一粒种子,都饱含辛酸。
2024 年 05 月 28 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
由于不经常使用,三角函数的和差化积和积化和差公式是我们在考研数学的复习过程中很容易忽略的一个知识点。
虽然大部分题目不使用和差化积和积化和差公式也能做出来,但掌握这些公式,对于开拓我们的解题思路,甚至在必要的时候用来“救急”都是很有必要的。
同时,在本文中,荒原之梦考研数学还会给大家提供一个原创的记忆这些公式的方法,帮助大家更高效的记忆和掌握这些公式。
继续阅读“用简化公式快速记住三角函数的和差化积与积化和差公式(荒原之梦考研数学原创)”
孤帆远影是一种惆怅,又何尝不是一种天涯任我闯的豪壮。
2024 年 05 月 27 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
$$
\left| \begin{array} { c c c c c } a _{ 1 } & 0 & 0 & b _{ 1 } \\ 0 & a _{ 2 } & b _{ 2 } & 0 \\ 0 & b _{ 3 } & a _{ 3 } & 0 \\ b _{ 4 } & 0 & 0 & a _{ 4 } \end{array} \right| = ?
$$
(A) $a _{ 1 } a _{ 2 } a _{ 3 } a _{ 4 }$ $-$ $b _{ 1 } b _{ 2 } b _{ 3 } b _{ 4 }$
(B) $a _{ 1 } a _{ 2 } a _{ 3 } a _{ 4 }$ $+$ $b _{ 1 } b _{ 2 } b _{ 3 } b _{ 4 }$
(C) $\left( a _{ 2 } a _{ 3 } – b _{ 2 } b _{ 3 } \right)$ $\left( a _{ 1 } a _{ 4 } – b _{ 1 } b _{ 4 } \right)$
(D) $\left( a _{ 1 } a _{ 2 } – b _{ 1 } b _{ 2 } \right)$ $\left( a _{ 3 } a _{ 4 } – b _{ 3 } b _{ 4 } \right)$
难度评级:
继续阅读“高阶行列式的计算思路:降阶或者找规律”
我们是如此渺小,一束光走过的距离都远超我们的想象;我们又是如此幸运,可以在亿万年的时光中,泛起微弱的涟漪。
2024 年 05 月 26 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
通过本文中,我们将解决下面的问题:

山河迤逦,更应壮志宏图,天空海阔,自当展翅高翔。
2024 年 05 月 25 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
已知 $\boldsymbol { A }$ 是 $3$ 阶实对称矩阵, $\boldsymbol { \alpha }$ $=$ $( – 1 , 1 , 1 ) ^ { \mathrm {\top} }$ 满足 $( \boldsymbol { A } – 2 \boldsymbol { E } ) \boldsymbol { \alpha }$ $=$ $0$, 且 $r ( \boldsymbol { A } )$ $=$ $1$, 则方程组 $\boldsymbol {A} x$ $=$ $0$ 的基础解系为:
A. $( 1 , 1 , 1 ) ^ { \mathrm {\top} } , ( 1 , – 1 , 0 ) ^ { \mathrm {\top} }$
B. $( 1 , 1 , 0 ) ^ { \mathrm {\top} } , ( 1 , 0 , 1 ) ^ { \mathrm {\top} }$
C. $( 1 , 1 , – 1 ) ^ { \mathrm {\top} } , ( – 1 , 0 , 1 ) ^ { \mathrm {\top} }$
D. $( 1 , 1 , 0 ) ^ { \mathrm {\top} } , ( – 1 , 0 , 1 ) ^ { \mathrm {\top} }$
难度评级:
graph TD
A[原式] --> |变形| B[特征值] --> |公式| C[特征向量];
D[秩为 1] --> E[只有一个非零特征值] --> F[0 为二重特征值] --> |实对称矩阵| G[特征值对应的特征向量正交];
C --> G;
G --> H[求解特征值] --> |变形| I[验证选项]
继续阅读“当特征值等于零的时候,求解特征值和特征向量的式子其实就是一个齐次线性方程组” 
一本书,就是一扇门,读一本书,就是打开一扇门,欣赏和感悟另一个世界。我们只能活在一个世界,但幸亏有书,让我们得以接触到其他的世界。
2024 年 05 月 24 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
已知,当 $x \rightarrow x_0$ 时, $f(x)$ 与 $g(x)$ 均为 $\left(x-x_0\right)$ 的同阶无穷小, 则下列说法正确的是哪一个?
(A) $f(x)$ $-$ $g(x)$ 一定是 $x$ $-$ $x_0$ 的同阶无穷小
(B) $f(x)$ $-$ $g(x)$ 一定是 $x$ $-$ $x_0$ 的高阶无穷小
(C) $f(x) \cdot g(x)$ 一定是 $x$ $-$ $x_0$ 的同阶无穷小
(D) $f(x) \cdot g(x)$ 一定是 $x$ $-$ $x_0$ 的高阶无穷小
难度评级:
继续阅读“无穷小乘以无穷小一定会产生更高阶的无穷小”
感谢这片土地,无论贫瘠或富饶,都是生我们养我们的地方。
2024 年 05 月 23 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
在考研数学中,我们常常会遇到涉及无穷小或者无穷大等无穷量的运算,在这些运算中,加减法和乘除法对无穷小量或者无穷大量的影响效果是怎样的呢?哪些运算可以改变无穷小量或者无穷大量的量级?
在本文中,荒原之梦考研数学将对这些问题做一一的解答。
继续阅读“【乘除】运算可以看作是【加减】运算的“高量级进化体””
行问心无愧事,做顶天立地人。
2024 年 05 月 22 日

每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
$I =$
$\lim_{x \rightarrow 0} \frac{(1-\sqrt{\cos x}) (1- \sqrt[3]{\cos x}) \cdots (1-\sqrt[n]{\cos x})}{(1-\cos x)^{n-1}}$ $=$ $?$
难度评级:
继续阅读“小细节大应用:根号一般都是从“二次”开始计算的”