题目
设函数 $f(x)=$ $\frac{x}{1+x}$, $x \in [0,1]$, 定义数列:
$$
f_{1}(x) = f(x),
$$
$$
f_{2}(x) = f[f_{1}(x)],
$$
$$
\cdot \cdot \cdot,
$$
$$
f_{n}(x) = f[f_{n-1}(x)],
$$
$$
\cdot \cdot \cdot
$$
记 $S_{n}$ 是曲线 $y=f_{n}(x)$, 直线 $x=1$ 及 $x$ 轴所围平面图形的面积,求极限 $\lim_{n \rightarrow \infty} n S_{n}$.
继续阅读“2014年考研数二第20题解析:极限、数列、数学归纳法”