一、题目
已知 $\boldsymbol{\alpha}_{1}=(1,2,1)^{\mathrm{\top}}$, $\boldsymbol{\alpha}_{2}=(2,3, a)^{\mathrm{\top}}$, $\boldsymbol{\alpha}_{3}=(1, a+2,-2)^{\mathrm{\top}}$, $\boldsymbol{\beta}=(1,3,0)^{\mathrm{\top}}$. 若 $\boldsymbol{\beta}$ 可 由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 线性表示,且表示法不唯一,则 $a=?$
难度评级:
继续阅读“只要说非齐次线性方程组的解“不唯一”——就是有“无穷多解””