一、前言 
本文给出了求解形如下面这样的二阶常系数线性齐次微分方程通解的方法:
$$
y^{\prime \prime} + p y^{\prime} + q y = 0
$$
其中,$p$ 和 $q$ 为常数。
继续阅读“求解二阶常系数线性齐次微分方程通解的方法”本文给出了求解形如下面这样的二阶常系数线性齐次微分方程通解的方法:
$$
y^{\prime \prime} + p y^{\prime} + q y = 0
$$
其中,$p$ 和 $q$ 为常数。
继续阅读“求解二阶常系数线性齐次微分方程通解的方法”$\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 整体线性表示
任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,且表示法唯一
$\boldsymbol{\beta}$ 可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性表示,且表示法唯一
不 能
向量 $\textcolor{orange}{\textcolor{orange}{\boldsymbol{\beta}}}$ 能 由 向量组 $\textcolor{yellow}{\boldsymbol{\alpha}_{1}}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{2}}$, $\textcolor{yellow}{\cdots}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{m}}$ 线 性 表 示
$\textcolor{red}{\Leftrightarrow}$
非齐次线性方程组 $\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_m\end{array}\right)$ $=$ $\boldsymbol{\beta}$ 有 解
不 能
向量 $\textcolor{orange}{\boldsymbol{\beta}}$ 能 由 向量组 $\textcolor{yellow}{\boldsymbol{\alpha}_{1}}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{2}}$, $\textcolor{yellow}{\cdots}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{m}}$ 线 性 表 示
$\textcolor{red}{\Leftrightarrow}$
存 在 常数 $\textcolor{cyan}{k_{1}}$, $\textcolor{cyan}{k_{2}}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{k_{m}}$, 使得 $\textcolor{cyan}{k_{1}} \textcolor{yellow}{\boldsymbol{\alpha}_{1}}$ $+$ $\textcolor{cyan}{k_{2}} \textcolor{yellow}{\boldsymbol{\alpha}_{2}}$ $+$ $\cdots$ $+$ $\textcolor{cyan}{k_{m}} \textcolor{yellow}{\boldsymbol{\alpha}_{m}}$ $=$ $\textcolor{orange}{\boldsymbol{\beta}}$ 成 立
向量组 $\textcolor{cyan}{\boldsymbol{\alpha}_{1}}$, $\textcolor{cyan}{\boldsymbol{\alpha}_{2}}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{\boldsymbol{\alpha}_{m}}$ 线 性 相 关
$\textcolor{yellow}{\Leftrightarrow}$
$\textcolor{orange}{\mathrm{r}}\left(\textcolor{cyan}{\boldsymbol{\alpha}_{1}}, \textcolor{cyan}{\boldsymbol{\alpha}_{2}}, \textcolor{cyan}{\cdots}, \textcolor{cyan}{\boldsymbol{\alpha}_{m}} \right)$ $<$ $\textcolor{red}{m}$
向量组 $\textcolor{cyan}{\boldsymbol{\alpha}_{1}}$, $\textcolor{cyan}{\boldsymbol{\alpha}_{2}}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{\boldsymbol{\alpha}_{m}}$ 线 性 无 关
$\textcolor{yellow}{\Leftrightarrow}$
$\textcolor{orange}{\mathrm{r}}\left(\textcolor{cyan}{\boldsymbol{\alpha}_{1}}, \textcolor{cyan}{\boldsymbol{\alpha}_{2}}, \textcolor{cyan}{\cdots}, \textcolor{cyan}{\boldsymbol{\alpha}_{m}} \right)$ $=$ $\textcolor{red}{m}$
向量组的 极 大 无 关 组 在研究矩阵的 秩 以及线性方程组的 基 础 解 系 等方面发挥着重要的作用,在本文中,荒原之梦网(zhaokaifeng.com)将给出一个关于 什 么 是 极 大 无 关 组 的详细定义。
继续阅读“什么是极大无关组?”