题目
编号:A2016219
已知 $y_{1}(x) = e^{x}$, $y_{2}(x) = u(x) e^{x}$ 是二阶微分方程:
$$
(2x – 1) y^{”} – (2x + 1) y^{‘} + 2y = 0
$$
的两个解. 若 $u(-1) = e$, $u(0) = -1$, 求 $u(x)$, 并写出该微分方程的通解.
解析
注:
[1]. 为了书写方便以及演算步骤的直观清晰,我们约定:
① 用 $y_{2}$ 代指题目中的 $y_{2}(x)$;
② 用 $u$ 代指题目中的 $u(x)$.
由题可得:
$$
\left\{\begin{matrix}
y_{2} = u e^{x};\\
y_{2}^{‘} = u^{‘}e^{x} + ue^{x};\\
y_{2}^{”} = u^{”}e^{x} + 2u^{‘}e^{x} + ue^{x}.
\end{matrix}\right.
$$
将上式代入到 $(2x – 1)$ $y^{”} -$ $(2x + 1) y^{‘} +$ $2y = 0$ 中可得:
$$
(2x – 1) y^{”} – (2x + 1) y^{‘} + 2y = 0 \Rightarrow
$$
$$
\left\{\begin{matrix}
(2x – 1) (u^{”}e^{x} + 2u^{‘}e^{x} + ue^{x}) -\\
(2x + 1) (u^{‘}e^{x} + ue^{x}) + 2u e^{x} = 0 \Rightarrow
\end{matrix}\right.
$$
$$
\left\{\begin{matrix}
e^{x}(2x – 1) (u^{”} + 2u^{‘} + u) -\\
e^{x}(2x + 1) (u^{‘} + u) + 2u = 0 \Rightarrow
\end{matrix}\right.
$$
$$
等式两边同时除以 e^{x} \Rightarrow
$$
$$
\left\{\begin{matrix}
(2x – 1) (u^{”} + 2u^{‘} + u) -\\
(2x + 1) (u^{‘} + u) + 2u = 0 \Rightarrow
\end{matrix}\right.
$$
$$
\left\{\begin{matrix}
2xu^{”} + 4xu^{‘} + 2xu-u^{”} – 2u^{‘} – u\\
2xu^{‘} – 2xu – u^{‘} – u + 2u = 0 \Rightarrow
\end{matrix}\right.
$$
$$
(2x-1)u^{”} + (2x-3)u^{‘} = 0.
$$
接着,令 $A = u^{‘}$, $A^{‘} = u^{”}$则:
$$
(2x-1)u^{”} + (2x-3)u^{‘} = 0 \Rightarrow
$$
$$
(2x-1)A^{‘} + (2x-3)A = 0 \Rightarrow
$$
$$
A^{‘} + (\frac{2x-3}{2x-1})A = 0 \Rightarrow
$$
$$
A^{‘} + (\frac{2x-1-2}{2x-1})A = 0 \Rightarrow
$$
$$
A^{‘} + (1-\frac{2}{2x-1})A = 0 \Rightarrow
$$
$$
一阶线性微分方程求解公式 \Rightarrow
$$
$$
A = C_{1} e^{- \int (1-\frac{2}{2x-1}) \mathrm{d}x} \Rightarrow
$$
$$
A = C_{1} e^{-[\int 1 \mathrm{d}x – \int \frac{2}{2x-1} \mathrm{d}x]} \Rightarrow
$$
$$
A = C_{1} e^{-[x – \ln(2x-1)]} \Rightarrow
$$
$$
A = C_{1} e^{\ln(2x-1) + (- x)} \Rightarrow
$$
$$
A = C_{1} [e^{\ln(2x-1)} \cdot e^{- x}] \Rightarrow
$$
$$
A = C_{1} (2x-1) \cdot e^{- x}.
$$
即:
$$
u^{‘} = C_{1} (2x-1) \cdot e^{- x}.
$$
于是:
$$
u = \int u^{‘} \mathrm{d}x \Rightarrow
$$
$$
u = \int C_{1} (2x-1) \cdot e^{- x} \mathrm{d}x \Rightarrow
$$
$$
u = C_{1} \int (2x-1) \cdot e^{- x} \mathrm{d}x \Rightarrow
$$
$$
u = C_{1} \int (2x e^{- x} – e^{- x}) \mathrm{d}x \Rightarrow
$$
$$
u = C_{1} [2 \int x e^{- x} \mathrm{d}x – \int e^{- x} \mathrm{d}x] \Rightarrow
$$
注:
[1]. $(e^{-x})^{‘} = – e^{x}$;
[2]. $-(e^{-x} + xe^{-x})^{‘} = xe^{-x}$.
$$
u = C_{1} [-2(e^{-x} + xe^{-x}) + e^{-x}] + C_{2} \Rightarrow
$$
$$
u = -C_{1}(2x+1)e^{-x} + C_{2}.
$$
又:
$$
\left\{\begin{matrix}
u(-1) = e;\\
u(0) = -1.
\end{matrix}\right.
$$
于是:
$$
\left\{\begin{matrix}
C_{1}e + C_{2} = e;\\
-C_{1} + C_{2} = -1.
\end{matrix}\right.
\Rightarrow
$$
$$
\left\{\begin{matrix}
C_{1}=1;\\
C_{2} = 0.
\end{matrix}\right.
$$
综上可知:
$$
u(x) = -(2x+1)e^{-x}.
$$