题目
设二次型 $f(x_{1}, x_{2}, x_{3})=$ $2(a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3})^{2} +$ $(b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3})^{2}$,
记 $\alpha=\begin{bmatrix}
a_{1}\\
a_{2}\\
a_{3}
\end{bmatrix}$, $\beta=\begin{bmatrix}
b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix}$,
$(Ⅰ)$ 证明:二次型 $f$ 对应的矩阵为 $2\alpha \alpha ^{\top}+\beta \beta ^{\top}$
$(Ⅱ)$ 若 $\alpha$, $\beta$ 正交且均为单位向量,证明:$f$ 在正交变换下的标准形为 $2y_{1}^{2}+y_{2}^{2}$.
解析
第 $(Ⅰ)$ 问
方法一
该方法的思路就是,先将 $f(x_{1}, x_{2}, x_{3})=$ $2(a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3})^{2} +$ $(b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3})^{2}$ 展开成一般形式,之后,再根据题目条件计算出 $2\alpha \alpha ^{\top}+\beta \beta ^{\top}$, 对比之后即可证明。
该方法的思路很容易想,但是计算量较大,计算过程中容易出错。
由题可得:
$$
f ( x_{1},x_{2},x_{3} ) \Rightarrow
$$
$$
2 ( a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3} ) ^{2}+ ( b_{1}x_{1}+b_{2}x_{2}+b_{3}x_{3} )^{2} \Rightarrow
$$
$$
2[(a_{1}x_{1} + a_{2}x_{2})^{2} + a_{3}^{2} x_{3}^{2} + 2a_{3}x_{3} (a_{1}x_{1} + a_{2}x_{2})] +
$$
$$
[(b_{1}x_{1} + b_{2}x_{2})^{2} + b_{3}^{2}x_{3}^{2} + 2b_{3}x_{3}(b_{1}x_{1} + b_{2}x_{2})] \Rightarrow
$$
$$
2[a_{1}^{2}x_{1}^{2} + a_{2}^{2}x_{2}^{2} + 2a_{1}a_{2}x_{1}x_{2} + a_{3}^{2}x_{3}^{2} + 2a_{1}a_{3}x_{1}x_{3} + 2a_{2}a_{3}x_{2}x_{3}] +
$$
$$
[b_{1}^{2}x_{1}^{2} + b_{2}^{2}x_{2}^{2} + 2b_{1}b_{2}x_{1}x_{2} + b_{3}^{2}x_{3}^{2} + 2b_{1}b_{3}x_{1}x_{3} + 2b_{2}b_{3}x_{2}x_{3}] \Rightarrow
$$
$$
2a_{1}^{2}x_{1}^{2} + 2a_{2}^{2}x_{2}^{2} + 4a_{1}a_{2}x_{1}x_{2} + 2a_{3}^{2}x_{3}^{2} + 4a_{1}a_{3}x_{1}x_{3} + 4a_{2}a_{3}x_{2}x_{3} +
$$
$$
b_{1}^{2}x_{1}^{2} + b_{2}^{2}x_{2}^{2} + 2b_{1}b_{2}x_{1}x_{2} + b_{3}^{2}x_{3}^{2} + 2b_{1}b_{3}x_{1}x_{3} + 2b_{2}b_{3}x_{2}x_{3} \Rightarrow
$$
$$
(2a_{1}^{2} + b_{1}^{2})x_{1}^{2} + (2a_{2}^{2} + b_{2}^{2})x_{2}^{2} + (2a_{3}^{2} + b_{3}^{2}) x_{3}^{2} +
$$
$$
(4a_{1}a_{2} + 2b_{1}b_{2})x_{1}x_{2} + (4a_{1}a_{3} + 2b_{1}b_{3})x_{1}x_{3} + (4a_{2}a_{3} + 2b_{2}b_{3})x_{2}x_{3}.
$$
又:
$$
2\alpha \alpha ^{\top}+\beta \beta ^{\top} \Rightarrow
$$
$$
2 \begin{bmatrix}
a_{1}\\
a_{2}\\
a_{3}
\end{bmatrix}
\begin{bmatrix}
a_{1} & a_{2} & a_{3}\\
\end{bmatrix}+
\begin{bmatrix}
b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix}
\begin{bmatrix}
b_{1} & b_{2} & b_{3}\\
\end{bmatrix} \Rightarrow
$$
$$
2 \begin{bmatrix}
a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3}\\
a_{1}a_{2} & a_{2}^{2} & a_{2}a_{3}\\
a_{1}a_{3} & a_{2}a_{3} & a_{3}^{2}\\
\end{bmatrix}+
\begin{bmatrix}
b_{1}^{2} & b_{1}b_{2} & b_{1}b_{3}\\
b_{1}b_{2} & b_{2}^{2} & b_{2}b_{3}\\
b_{1}b_{3} & b_{2}b_{3} & b_{3}^{2}\\
\end{bmatrix} \Rightarrow
$$
$$
\begin{bmatrix}
2a_{1}^{2} + b_{1}^{2} & 2a_{1}a_{2} + b_{1}b_{2} & 2a_{1}a_{3} + b_{1}b_{3}\\
2a_{1}a_{2} + b_{1}b_{2} & 2a_{2}^{2} + b_{2}^{2} & 2a_{2}a_{3}+b_{2}b_{3}\\
2a_{1}a_{3} +b_{1}b_{3} & 2a_{2}a_{3} + b_{2}b_{3} & 2a_{3}^{2} + b_{3}^{2}\\
\end{bmatrix}.
$$
观察上面的运算结果可知,二次型 $f$ 对应的矩阵为 $2\alpha \alpha ^{\top}+\beta \beta ^{\top}$.
方法二
令:
$$
x =\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}
$$
于是,有:
$$
f(x_{1}, x_{2}, x_{3}) \Rightarrow
$$
$$
2(a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3})^{2} + (b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3})^{2} \Rightarrow
$$
$$
2(a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3}) \cdot (x_{1}a_{1} + x_{2}a_{2}+x_{3}a_{3}) +
$$
$$
(b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3}) \cdot (x_{1}b_{1} + x_{2}b_{2} + x_{3}b_{3}) \Rightarrow
$$
$$
2 \left\{ \right.\begin{bmatrix}
a_{1}\\
a_{2}\\
a_{3}
\end{bmatrix}
x^{\top}\left. \right \} \cdot \left\{ \right.x \begin{bmatrix}
a_{1} & a_{2} & a_{3}\\
\end{bmatrix}
\left. \right \}+
$$
$$
\left\{ \right. \begin{bmatrix}
b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix} x^{\top}\left. \right \} \cdot \left\{ \right.x \begin{bmatrix}
b_{1} & b_{2} & b_{3}\\
\end{bmatrix}
\left. \right \} \Rightarrow
$$
$$
2 x^{\top} \left\{ \right. \begin{bmatrix}
a_{1}\\
a_{2}\\
a_{3}
\end{bmatrix}
\begin{bmatrix}
a_{1} & a_{2} & a_{3}\\
\end{bmatrix}
\left. \right \} x + x^{\top} \left\{ \right. \begin{bmatrix}
b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix}
\begin{bmatrix}
b_{1} & b_{2} & b_{3}\\
\end{bmatrix}
\left. \right \} x \Rightarrow
$$
$$
x^{\top} \left\{ \right. 2\begin{bmatrix}
a_{1}\\
a_{2}\\
a_{3}
\end{bmatrix}
\begin{bmatrix}
a_{1} & a_{2} & a_{3}\\
\end{bmatrix}+
\begin{bmatrix}
b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix}
\begin{bmatrix}
b_{1} & b_{2} & b_{3}\\
\end{bmatrix}
\left. \right \} x \Rightarrow
$$
$$
x^{\top} (2 \alpha \alpha^{\top} + \beta \beta^{\top}) x.
$$
又由定义可知,若二次型的矩阵为 $A$, 则 二次型 $f=x^{\top}Ax$, 若令 $A=2 \alpha \alpha^{\top} + \beta \beta^{\top}$, 则可知,二次型 $f$ 对应的矩阵为 $2\alpha \alpha ^{\top}+\beta \beta ^{\top}$. 于是,本题得证。
第 $(Ⅱ)$ 问
由 $\alpha$ 与 $\beta$ 正交可知:
$$
(\alpha, \beta) = \alpha^{\top} \beta = 0;
$$
$$
(\beta, \alpha) = \beta^{\top} \alpha = 0.
$$
又由 $\alpha$ 与 $\beta$ 均为单位向量可知:
$$
\alpha \alpha^{\top} = E; \alpha^{\top} \alpha = 1;
$$
$$
\beta \beta^{\top} = E; \beta^{\top} \beta = 1.
$$
又设:
$$
A = 2 \alpha \alpha^{\top} + \beta \beta^{\top}.
$$
则:
$$
A \alpha = (2 \alpha \alpha^{\top} + \beta \beta^{\top}) \alpha \Rightarrow
$$
$$
A \alpha = 2 \alpha (\alpha^{\top} \alpha) + \beta (\beta^{\top} \alpha) \Rightarrow
$$
$$
A \alpha = 2 \alpha \cdot 1 + \beta \cdot 0.
$$
$$
A \alpha = 2 \alpha.
$$
$$
A \beta = (2 \alpha \alpha^{\top} + \beta \beta^{\top}) \beta \Rightarrow
$$
$$
A \beta = 2 \alpha (\alpha^{\top} \beta) + \beta (\beta^{\top} \beta) \Rightarrow
$$
$$
A \beta = 2 \alpha \cdot 0 + \beta \cdot 1 \Rightarrow
$$
$$
A \beta = \beta.
$$
于是可知:
$\alpha$ 为矩阵 $A$ 属于特征值 $\lambda_{1}=2$ 的特征向量;
$\beta$ 为矩阵 $A$ 属于特征值 $\lambda_{2}=1$ 的特征向量。
又:
$$
r(A) = r(2 \alpha \alpha^{\top} + \beta \beta^{\top}) \leqslant [r(2 \alpha \alpha^{\top}) + r(\beta \beta^{\top})].
$$
且:
$$
[r(2 \alpha \alpha^{\top}) + r(\beta \beta^{\top})] = [r(E) + r(E)] = 1+1 = 2.
$$
即:
$$
r(A) = 2 < 3.
$$
因此,根据矩阵的秩与矩阵的特征值之间的关系可知,矩阵 $A$ 必存在一个 $\lambda_{3}=0$ 的特征值。
结合定义,综上可知,二次型 $f$ 在正交变换下的标准形为 $2y_{1}^{2}+y_{2}^{2}$.