题目
$
\left\{\begin{matrix}
x=\cos ^{3} t,\\
y=\sin ^{3} t
\end{matrix}\right.
$ 在 $t=\frac{\pi}{4}$ 对应点处的曲率为 $?$
解析
曲率的计算公式:
$$
K=\frac{|y^{”}|}{(1+y^{‘2})^{\frac{3}{2}}}.
$$
接下来就是参数方程求导的问题了。
$$
y^{‘} = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.
$$
又:
$$
\frac{dy}{dt} = 3 \sin ^{2} t \cdot \cos t;
$$
$$
\frac{dx}{dt} = 3 \cos ^{2} t (- \sin t).
$$
所以:
$$
y^{‘} = \frac{\sin t}{- \cos t} = – \tan t.
$$
又:
$$
y^{”} = \frac{d}{dx} \frac{dy}{dx} = \frac{d y^{‘}}{dx} = \frac{\frac{d y^{‘}}{dt}}{\frac{dx}{dt}}.
$$
又:
$$
\frac{d y^{‘}}{dt} = – \sec ^{2} t = – \frac{1}{\cos ^{2} t}.
$$
所以:
$$
y^{”} = – \frac{1}{\cos ^{2} t} \cdot \frac{1}{3 \cos ^{2} t (- \sin t)} \Rightarrow
$$
$$
y^{”} = \frac{1}{3 \cos ^{4} t \sin t}
$$
当 $t = \frac{\pi}{4}$ 时:
$$
y^{‘} = -1.
$$
$$
y^{”} = \frac{1}{3 \cdot \frac{1}{4} \cdot \frac{\sqrt{2}}{2}} = \frac{4 \sqrt{2}}{3}
$$
于是,曲率 $K=$
$$
\frac{|y^{”}|}{(1+y^{‘2})^{\frac{3}{2}}} =
$$
$$
\frac{\frac{4 \sqrt{2}}{3}}{(1+1)^{\frac{3}{2}}} =
$$
$$
\frac{\frac{4 \sqrt{2}}{3}}{2 \sqrt{2}} =
$$
$$
\frac{2}{3}.
$$
综上可知,正确答案为 $\frac{2}{3}$.
EOF