用克拉默法则计算线性方程组的解(C006)

问题

已知,有线性方程组:
$\left\{\begin{array}{l} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \vdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \end{array}\right.$

其系数行列式为 $D$, 而 $D_{j}$ 则是把系数行列式 $D$ 中第 $j$ 列用常数项代替后所得到的 $n$ 阶行列式,其中 $j$ $=$ $1$, $2$, $\cdots$, $n$.

则,根据克拉默法则,如果该线性方程组有唯一的解,那么,这组解该怎么表示?

选项

[A].   $x_{1}$ $=$ $D_{1} D$, $x_{2}$ $=$ $D_{2} D$, $\cdots$, $x_{n}$ $=$ $D_{n} D$

[B].   $x_{1}$ $=$ $\frac{D_{1}}{D}$, $x_{2}$ $=$ $\frac{D_{2}}{D}$, $\cdots$, $x_{n}$ $=$ $\frac{D_{n}}{D}$

[C].   $x_{1}$ $=$ $\frac{D}{D_{1}}$, $x_{2}$ $=$ $\frac{D}{D_{2}}$, $\cdots$, $x_{n}$ $=$ $\frac{D}{D_{n}}$

[D].   $x_{1}$ $=$ $D_{1}$, $x_{2}$ $=$ $D_{2}$, $\cdots$, $x_{n}$ $=$ $D_{n}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$x_{1}$ $=$ $\frac{\textcolor{orange}{D_{1}}}{\textcolor{cyan}{D}}$, $x_{2}$ $=$ $\frac{\textcolor{orange}{D_{2}}}{\textcolor{cyan}{D}}$, $\cdots$, $x_{n}$ $=$ $\frac{\textcolor{orange}{D_{n}}}{\textcolor{cyan}{D}}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress