已知,当 $x$ $\rightarrow$ $0$ 时:
$$
(1+x)^{a} – 1 \sim ax
$$
于是:
$$
\sqrt{1+x} – \sqrt{1-x} =
$$
$$
[(1+x)^{\frac{1}{2}} – 1] – [(1-x)^{\frac{1}{2}} – 1] \sim
$$
$$
\frac{1}{2} x – (- \frac{1}{2}x) =
$$
$$
\frac{1}{2} x + \frac{1}{2} x = x.
$$
综上有,当 $x$ $\rightarrow$ $0$ 时:
$$
\sqrt{1+x} – \sqrt{1-x} \sim x
$$