偏导数 $\frac{\partial z}{\partial x}$(B012)

问题

已知函数 $z$ $=$ $f(x, y)$ 在 $(x, y)$ 的某邻域内有定义,且以下选项中的极限均存在,则 $\frac{\partial z}{\partial x}$ $=$ $?$

选项

[A].   $\frac{\partial z}{\partial x}$ $=$ $\lim_{\Delta \rightarrow x}$ $\frac{f(x + \Delta x, y) – f(x, y)}{f(x, y)}$

[B].   $\frac{\partial z}{\partial x}$ $=$ $\lim_{\Delta \rightarrow x}$ $\frac{f(x + \Delta x, y) – f(x, y)}{x}$

[C].   $\frac{\partial z}{\partial x}$ $=$ $\lim_{\Delta \rightarrow x}$ $\frac{f(x, y + \Delta y) – f(x, y)}{\Delta x}$

[D].   $\frac{\partial z}{\partial x}$ $=$ $\lim_{\Delta \rightarrow x}$ $\frac{f(x + \Delta x, y) + f(x, y)}{\Delta x}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{\partial \textcolor{red}{z}}{\partial \textcolor{orange}{x}}$ $=$ $\lim_{\textcolor{yellow}{\Delta} \rightarrow \textcolor{orange}{x}}$ $\frac{f(\textcolor{orange}{x} + \textcolor{yellow}{\Delta} \textcolor{orange}{x}, \textcolor{cyan}{y}) \textcolor{yellow}{-} f(\textcolor{orange}{x}, \textcolor{cyan}{y})}{\textcolor{yellow}{\Delta} \textcolor{orange}{x}}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress