问题
已知空间曲线 $L$ 的一般方程为 $\left\{\begin{array}{l} F(x, y, z)=0 \\ G(x, y, z)=0 \end{array}\right.$, 则该曲线在空间直角坐标系的 $zOx$ 平面上的投影曲线的方程该如何表示?选项
[A]. $\left\{\begin{array}{l} F(x, y, z)=0 \\ G(x, y, z)=0 \end{array}\right.$ $\Rightarrow$ 消去 $z$ $\Rightarrow$ $\left\{\begin{array}{l} T(x, y)=0 \\ z=0 \end{array}\right.$[B]. $\left\{\begin{array}{l} F(x, y, z)=0 \\ G(x, y, z)=0 \end{array}\right.$ $\Rightarrow$ 消去 $y$ $\Rightarrow$ $\left\{\begin{array}{l} T(x, z)=0 \\ y=0 \end{array}\right.$
[C]. $\left\{\begin{array}{l} F(x, y, z)=0 \\ G(x, y, z)=0 \end{array}\right.$ $\Rightarrow$ 消去 $x$ $\Rightarrow$ $\left\{\begin{array}{l} T(y, z)=0 \\ x=0 \end{array}\right.$
[D]. $\left\{\begin{array}{l} F(x, y, z)=0 \\ G(x, y, z)=0 \end{array}\right.$ $\Rightarrow$ 消去 $y$ $\Rightarrow$ $\left\{\begin{array}{l} T(x, z)=y \\ y=0 \end{array}\right.$
$\left\{\begin{array}{l} F(\textcolor{orange}{x}, \textcolor{orange}{y}, \textcolor{cyan}{z})=0 \\ G(\textcolor{orange}{x}, \textcolor{orange}{y}, \textcolor{cyan}{z})=0 \end{array}\right.$ $\Rightarrow$ 消去 $\textcolor{cyan}{y}$ $\Rightarrow$ $\left\{\begin{array}{l} T(\textcolor{orange}{x}, \textcolor{orange}{z})=0 \\ \textcolor{cyan}{y}=\textcolor{red}{0} \end{array}\right.$