题目
设实二次型 $f(x_{1}, x_{2}, x_{3}) =$ $(x_{1} – x_{2} + x_{3})^{2} +$ $(x_{2} + x_{3})^{2} +$ $(x_{1} + a x_{3})^{2}$, 其中 $a$ 是参数.
$(Ⅰ)$ 求 $f(x_{1}, x_{2}, x_{3}) = 0$ 的解;
$(Ⅱ)$ 求 $f(x_{1}, x_{2}, x_{3})$ 的规范型.
解析
第 $(Ⅰ)$ 问
使 $f(x_{1}, x_{2}, x_{3}) =$ $(x_{1} – x_{2} + x_{3})^{2} +$ $(x_{2} + x_{3})^{2} +$ $(x_{1} + a x_{3})^{2} = 0$ 的充分必要条件是:
$$
{\color{Red}
\left\{\begin{matrix}
x_{1} – x_{2} + x_{3} = 0;\\
x_{2} + x_{3} = 0;\\
x_{1} + a x_{3} = 0
\end{matrix}\right.}
\Rightarrow
$$
$$
{\color{Red}
\left\{\begin{matrix}
x_{1} – x_{2} + x_{3} = 0;\\
0 x_{1} + x_{2} + x_{3} = 0;\\
x_{1} + 0x_{2} + ax_{3} = 0
\end{matrix}\right.}
\Rightarrow
$$
$$
提取系数矩阵后,可转换为 \Rightarrow
$$
$$
\begin{bmatrix}
1 & -1 & 1\\
0 & 1 & 1\\
1 & 0 & a
\end{bmatrix}
\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix} = 0
\Rightarrow
$$
$$
对系数矩阵做初等行变换 \Rightarrow
$$
$$
{\color{Red}
\begin{bmatrix}
1 & -1 & 1\\
0 & 1 & 1\\
0 & 0 & a – 2
\end{bmatrix}
\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix} = 0}.
$$
于是,当 $a \neq 2$ 时,$f(x_{1}, x_{2}, x_{3}) = 0$ 只有零解:
$$
{\color{Red}
\begin{bmatrix}
0\\
0\\
0
\end{bmatrix}}.
$$
当 $a = 2$ 时,有:
$$
\begin{bmatrix}
1 & -1 & 1\\
0 & 1 & 1\\
0 & 0 & a – 2
\end{bmatrix}
\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix} = 0 \Rightarrow
$$
$$
{\color{Red}
\begin{bmatrix}
1 & -1 & 1\\
0 & 1 & 1\\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix} = 0}.
$$
此时,$f(x_{1}, x_{2}, x_{3}) = 0$ 的解为:
$$
{\color{Red}
k \begin{bmatrix}
-2\\
-1\\
1
\end{bmatrix}}.
$$
其中,$k$ 为任意常数.
第 $(Ⅱ)$ 问
由第 $(Ⅰ)$ 问的计算可知,要求解 $f(x_{1}, x_{2}, x_{3})$ 的规范型,必须分别对 $a = 0$ 和 $a \neq 0$ 这两种情况进行讨论.
首先,对于 $f(x_{1}, x_{2}, x_{3}) =$ $(x_{1} – x_{2} + x_{3})^{2} +$ $(x_{2} + x_{3})^{2} +$ $(x_{1} + a x_{3})^{2}$, 必有:
$$
{\color{Red}
\left\{\begin{matrix}
(x_{1} – x_{2} + x_{3})^{2} \geqslant 0;\\
(x_{2} + x_{3})^{2} \geqslant 0;\\
(x_{1} + a x_{3})^{2} \geqslant 0.
\end{matrix}\right.}
\Rightarrow
$$
$$
{\color{Red}
f(x_{1}, x_{2}, x_{3}) \geqslant 0}.
$$
又由第 $(Ⅰ)$ 问的计算结果可知,当 $a \neq 2$ 时,只有 $x_{1}$, $x_{2}$ 和 $x_{3}$ 同时都等于零,才能使 $f(x_{1}, x_{2}, x_{3}) = 0$ 成立。
因此,当 $x_{1}$, $x_{2}$ 和 $x_{3}$ 全都不等于零,且 $a \neq 2$ 时,必有:
$$
f(x_{1}, x_{2}, x_{3}) > 0.
$$
于是可知,当 $a \neq 2$ 时,二次型 $f(x_{1}, x_{2}, x_{3})$ 是一个正定二次型,即该二次型对应的特征值全部为正数,正惯性指数为 $3$.
因此,当 $a \neq 2$ 时,$f(x_{1}, x_{2}, x_{3})$ 的规范型为:
$$
{\color{Red}
y_{1}^{2} + y_{2}^{2} + y_{3}^{2}}.
$$
而当 $a = 2$ 时,有:
$$
f(x_{1}, x_{2}, x_{3}) =
$$
$$
(x_{1} – x_{2} + x_{3})^{2} + (x_{2} + x_{3})^{2} + (x_{1} + a x_{3})^{2} \Rightarrow
$$
$$
(x_{1} – x_{2} + x_{3})^{2} + (x_{2} + x_{3})^{2} + (x_{1} + 2 x_{3})^{2} \Rightarrow
$$
$$
\left\{\begin{matrix}
(x_{1} – x_{2} + x_{3})^{2} = x_{1}^{2} + x_{2}^{2} – 2 x_{1} x_{2} + x_{3}^{2} + 2 x_{1} x_{3} – 2 x_{2} x_{3};\\
(x_{2} + x_{3})^{2} = x_{2}^{2} + x_{3}^{2} + 2 x_{2} x_{3};\\
(x_{1} + 2 x_{3})^{2} = x_{1}^{2} + 4x_{3}^{2} + 4x_{1}x_{3}.
\end{matrix}\right.
\Rightarrow
$$
$$
f(x_{1}, x_{2}, x_{3}) =
$$
$$
2x_{1}^{2} + 2x_{2}^{2} + 6x_{3}^{2} – 2x_{1}x_{2} + 6x_{1}x_{3} \Rightarrow
$$
$$
f(x_{1}, x_{2}, x_{3}) =
$$
$$
(x_{1}, x_{2}, x_{3})
\begin{bmatrix}
2 & -1 & 3\\
-1 & 2 & 0\\
3 & 0 & 6
\end{bmatrix}
\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}
\Rightarrow
$$
$$
|\lambda E – A| = 0 \Rightarrow
$$
$$
\begin{vmatrix}
\lambda – 2 & 1 & -3\\
1 & \lambda – 2 & 0\\
-3 & 0 & \lambda – 6
\end{vmatrix} = 0 \Rightarrow
$$
$$
(\lambda – 6)(\lambda – 2)^{2} – 9 (\lambda – 2) – (\lambda – 6) = 0 \Rightarrow
$$
$$
(\lambda – 2) [\lambda^{2} – 8 \lambda + 3] – \lambda + 6 = 0 \Rightarrow
$$
$$
\lambda (\lambda ^{2} – 10 \lambda + 18) = 0 \Rightarrow
$$
$$
{\color{Red}
\left\{\begin{matrix}
\lambda_{1} = 0\\
\lambda_{2} = 5 + \sqrt{7} > 0\\
\lambda_{3} = 5 – \sqrt{7} > 0.
\end{matrix}\right.}
$$
于是可知,当 $a = 2$ 时,$f(x_{1}, x_{2}, x_{3})$ 的正惯性指数为 $2$.
因此,当 $a = 2$ 时,$f(x_{1}, x_{2}, x_{3})$ 的规范型为:
$$
{\color{Red}
y_{1}^{2} + y_{2}^{2}}.
$$