泰勒公式 VS 拆项变形,哪种解法更简单?

一、题目

$$
I = \lim_{x \rightarrow 0} \frac{ 2 – \left(\frac{1+\cos x}{2}\right)^{x} – \left[\frac{1+\ln(1+x)}{1+x}\right]^{x}}{x^{3}} = ?
$$

二、解析

首先,令:

$$
\begin{aligned}
A(x) & = \left( \frac{1 + \cos x}{2} \right)^{x} \\ \\
B(x) & = \left[ \frac{1 + \ln(1+x)}{1 + x} \right]^{x}
\end{aligned}
$$

接着,根据 $\mathrm{e}$ 抬起,我们有:

$$
\begin{aligned}
A(x) & = \mathrm{e}^{x \cdot \ln \left(\frac{1+\cos x}{2}\right)} \\ \\
B(x) & = \mathrm{e}^{x \cdot \ln \left( \frac{1+\ln(1+x)}{1+x} \right)}
\end{aligned}
$$

于是,根据泰勒公式,有:

$$
\cos x = 1 – \frac{x^{2}}{2} + o(x^{2})
$$

因此:

$$
\frac{1+\cos x}{2} = \frac{1 + (1 – \frac{x^{2}}{2} + o(x^{2}))}{2} = 1 – \frac{x^{2}}{4} + o(x^{2})
$$

又因为,当 $t \rightarrow 0$, 有:

$$
\ln(1+t) \sim t
$$

所以:

$$
\ln \left(1 – \frac{x^{2}}{4} + o(x^{2})\right) = \frac{-x^{2}}{4} + o(x^{2})
$$

于是:

$$
x \cdot \ln \left(\frac{1+\cos x}{2}\right) = x \left( \frac{-x^{2}}{4} + o(x^{2}) \right) = \frac{-x^{3}}{4} + o(x^{3})
$$

又根据泰勒公式可知:

$$
\mathrm{e}^t = 1 + t + o(t)
$$

于是:

$$
A(x) = \mathrm{e}^{-\frac{x^{3}}{4} + o(x^{3})} = 1 – \frac{x^{3}}{4} + o(x^{3})
$$

对于 $B(x)$ $=$ $\mathrm{e}^{x \cdot \ln \left( \frac{1+\ln(1+x)}{1+x} \right)}$, 我们首先对其中的对数部分进行变形简化:

$$
\ln \left[ \frac{1+\ln(1+x)}{1+x} \right] = \ln[1+\ln(1+x)] – \ln(1+x)
$$

接着,根据泰勒公式,有:

$$
\ln(1+x) = x – \frac{x^{2}}{2} + o(x^{2})
$$

于是,若令 $t$ $=$ $\ln(1+x) = x – \frac{x^{2}}{2} + o(x^{2})$, 则:

$$
\begin{aligned}
\ln[1+\ln(1+x)] & = \ln(1+t) \\ \\
& = t – \frac{t^{2}}{2} + o(t^{2}) \\ \\
& = \left(x – \frac{x^{2}}{2}\right) – \frac{1}{2}\left(x – \frac{x^{2}}{2}\right)^{2} + o(x^{2}) \\ \\
& = x – \frac{x^{2}}{2} – \frac{x^{2}}{2} + o(x^{2}) \\ \\
& = x – x^{2} + o(x^{2})
\end{aligned}
$$

所以:

$$
\begin{aligned}
\ln \left[ \frac{1+\ln(1+x)}{1+x} \right] & = \ln[1+\ln(1+x)] – \ln(1+x) \\ \\
& = (x – x^{2}) – (x – \frac{x^{2}}{2}) + o(x^{2}) \\ \\
& = \frac{-x^{2}}{2} + o(x^{2})
\end{aligned}
$$

进而:

$$
x \cdot \left( \frac{-x^{2}}{2} + o(x^{2}) \right) = \frac{-x^{3}}{2} + o(x^{3})
$$

因此:

$$
\begin{aligned}
B(x) & = \mathrm{e}^{\frac{-x^{3}}{2} + o(x^{3})} \\ \\
& = 1 – \frac{x^{3}}{2} + o(x^{3})
\end{aligned}
$$

综上,有:

$$
\begin{aligned}
\textcolor{springgreen}{ I } & = \lim_{x \rightarrow 0} \frac{2 – (1 – \frac{x^{3}}{4}) – (1 – \frac{x^{3}}{2}) + o(x^{3})}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{2 – 1 + \frac{x^{3}}{4} – 1 + \frac{x^{3}}{2}}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{\frac{3}{4}x^{3}}{x^{3}} \\ \\
& = \textcolor{springgreen}{ \frac{3}{4} }
\end{aligned}
$$

首先,将原式设为:

$$
\begin{aligned}
I & = \lim_{x \rightarrow 0} \frac{ 2 – \textcolor{orange}{ \left(\frac{1+\cos x}{2}\right)^{x} } – \textcolor{lightgreen}{ \left[\frac{1+\ln(1+x)}{1+x}\right]^{x}}}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \left( \frac{1 – \textcolor{orange}{ A(x) }}{x^{3}} + \frac{1 – \textcolor{lightgreen}{ B(x) }}{x^{3}} \right) \\ \\
& = \lim_{x \rightarrow 0} \left( L_{1} + L_{2} \right)
\end{aligned}
$$

又根据等价无穷小变换可知,当 $\square \rightarrow 1$ 的时候,有:

$$
1 – \square \sim -\ln(\square)
$$

于是:

$$
\begin{aligned}
L_{1} & = \lim \frac{1 – A(x)}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{-\ln(A(x))}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{-x \ln(\frac{1+\cos x}{2})}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{-\ln(1 + \frac{\cos x – 1}{2})}{x^{2}} \\ \\
& \sim \lim_{x \rightarrow 0} \frac{-( \frac{\cos x – 1}{2} )}{x^{2}} \\ \\
& = \lim_{x \rightarrow 0} \frac{ \frac{1 – \cos x}{2} }{x^{2}} \\ \\
& = \lim_{x \rightarrow 0} \frac{ \frac{1}{2} \cdot \frac{x^{2}}{2} }{x^{2}} \\ \\
& = \frac{1}{4} \\ \\ \\
L_{2} & = \lim \frac{1 – B(x)}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{-\ln(B(x))}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{-x \ln \left( \frac{1+\ln(1+x)}{1+x} \right)}{x^{3}} \\ \\
& = \lim_{x \rightarrow 0} \frac{ \ln(1+x) – \ln(1+\ln(1+x)) }{x^{2}} \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{ \text{令 } t = \ln (1+x), \text{则当 } x \rightarrow 0 \text{ 时 } t \rightarrow 0} \\ \\
& = \textcolor{#00bffe}{ \lim_{t \rightarrow 0} \frac{t – \ln(1+t)}{t^{2}} } \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{洛必达法则} \\ \\
& = \lim_{t \rightarrow 0} \frac{1 – \frac{1}{1+t}}{2t} \\ \\
& = \lim_{t \rightarrow 0} \frac{t}{1+t} \times \frac{1}{2t} \\ \\
& = \lim_{t \rightarrow 0} \frac{1}{2 \left( 1+t \right)} \\ \\
& = \frac{1}{2}
\end{aligned}
$$

综上,有:

$$
\begin{aligned}
\textcolor{springgreen}{ I } & = \lim_{x \rightarrow 0} \left( L_{1} + L_{2} \right) \\ \\
& = \frac{1}{4} + \frac{1}{2} \\ \\
& = \textcolor{springgreen}{\frac{3}{4}}
\end{aligned}
$$

当然,对于上面的 $\textcolor{#00bffe}{ \lim_{t \rightarrow 0} \frac{t – \ln(1+t)}{t^{2}} }$, 也可以用泰勒公式求解——

根据泰勒公式,可知:

$$
\ln(1+t) \approx t – \frac{t^{2}}{2}
$$

于是:

$$
t – \left( t – \frac{t^{2}}{2} \right) = \frac{t^{2}}{2}
$$

因此:

$$
L_{2} = \frac{\frac{t^{2}}{2}}{t^{2}} = \frac{1}{2}
$$

三、补充

本题也可以利用洛必达法则,以多次求导的方式完成求解,但是,这种方法在本题中计算量较大,且过程繁琐,不推荐使用.


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress