利用平方差公式和立方差公式求解分式的极限

平方差公式

已知,平方差公式为:

$$
\left( a+b \right) \times \left( a-b \right) = a^{2} – b^{2}
$$

所以:

$$
\left( 1 – \sqrt{x} \right) \left( 1 + \sqrt{x} \right) = 1-x
$$

于是:

$$
\lim_{x \rightarrow 1} \frac{1 – x}{2 \left( 1 – \sqrt{x} \right)} = \lim_{x \rightarrow 1} \frac{\left( 1 – x \right) \left( 1 + \sqrt{x} \right)}{2 \left( 1 – x \right)} = 1
$$

难度评级:

立方差公式

已知,立方差公式为:

$$
a^{3} – b^{3} = \left( a-b \right) \times \left( a^{2} + b^{2} +ab \right)
$$

所以:

$$
\left( 1 – \sqrt[3]{x} \right) \left( \sqrt[3]{x^{2}} + \sqrt[3]{x} + 1 \right) = 1 – x
$$

于是:

$$
\lim_{x \rightarrow 1} \frac{1 – x}{1 – \sqrt[3]{x}} = \lim_{x \rightarrow 1} \frac{\left( 1 – x \right) \left( \sqrt[3]{x^{2}} + \sqrt[3]{x} + 1 \right)}{1 – x} = 3
$$

难度评级:

$n$ 方差($n$ 次幂差)公式

事实上,当 $n$ 为正整数的时候,对于式子 $a^{n} – b^{n}$, 我们有下面的通用计算公式:

$$
\begin{aligned}
a^{n} – b^{n} & = \left( a – b \right) \sum_{k=0}^{n-1} a^{n-1-k} b^{k} \\ \\
& = \left( a – b \right) \left( a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \cdots + ab^{n-2} + b^{n-1} \right)
\end{aligned}
$$

于是——

  1. 当 $n=2$ 时,有:

$$
a^{2} – b^{2} = \left( a – b \right) \left( a + b \right)
$$

  1. 当 $n=3$ 时,有:

$$
a^{3} – b^{3} = \left( a – b \right) \left( a^{2} + ab + b^{2} \right)
$$

  1. 当 $n=4$ 时,有:

$$
a^{4} – b^{4} = \left( a – b \right) \left( a^{3} + a^{2}b + ab^{2} + b^{3} \right)
$$

需要注意的是,由于:

$$
a^{3} – b^{3} = \left( a – b \right) \left( a^{2} + ab + b^{2} \right) \textcolor{orangered}{ \neq \left( a – b \right) \left( a^{2} + 2ab + b^{2} \right) }
$$

即:

$$
a^{3} – b^{3} = \left( a – b \right) \left( a^{2} + ab + b^{2} \right) \textcolor{orangered}{ \neq \left( a – b \right) \left( a+b \right)^{3-1} }
$$

因此:

$$
\textcolor{orangered}{
a^{n} – b^{n} \neq \left( a-b \right) \left( a+b \right)^{n-1}
}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress