行列式“剥洋葱”:对于行或者列之间存在普遍规律的行列式可以尝试先提取其“公共部分”

一、题目题目 - 荒原之梦

已知 ai 0 (i = 1, 2, 3, 4), 则:

|V|=|a13a12b1a1b12b13a23a22b2a2b22b23a33a32b3a3b32b33a43a42b4a4b42b43|=?

难度评级:

二、解析 解析 - 荒原之梦

观察可知,题目中所给的行列式 V 是一个行与行之间非常有规律的一个行列式,如果我们提取出来一个 a1, 那么,行列式 |V| 的第一行将变为:

a12a1b1b12b13a1

如果我们提取出来一个 a12, 那么,行列式 |V| 的第一行将变为:

a1b1b12a1b13a12

如果我们提取出来一个 a13, 那么,行列式 |V| 的第一行将变为:

1b1a1b12a12b13a13

于是可知,我们可以对行列式 |V| 做如下变形:

|a13a12b1a1b12b13a23a22b2a2b22b23a33a32b3a3b32b33a43a42b4a4b42b43|a13|1b1a1b12a12b13a13a23a22b2a2b22b23a33a32b3a3b32b33a43a42b4a4b42b43|a13a23|1b1a1b12a12b13a131b2a2b22a22b23a23a33a32b3a3b32b33a43a42b4a4b42b43|a13a23a33|1b1a1b12a12b13a131b2a2b22a22b23a231b3a3b32a32b33a33a43a42b4a4b42b43|a13a23a33a43|1b1a1b12a12b13a131b2a2b22a22b23a231b3a3b32a32b33a331b4a4b42a42b43a43|a13a23a33a43|1b1a1b12a12b13a130b2a2b1a1b22a22b12a12b23a23b13a130b3a3b1a1b32a32b12a12b33a33b13a130b4a4b1a1b42a42b12a12b43a43b13a13|a13a23a33a431|b2a2b1a1b22a22b12a12b23a23b13a13b3a3b1a1b32a32b12a12b33a33b13a13b4a4b1a1b42a42b12a12b43a43b13a13|

使用相同的提取方法,继续对上面绿色部分的行列式进行转换,可得:

a13a23a33a43|b2a2b1a1b22a22b12a12b23a23b13a13b3a3b1a1b32a32b12a12b33a33b13a13b4a4b1a1b42a42b12a12b43a43b13a13|a13a23a33a43(b2a2b1a1)×|1b2a2b1a1b22a22b12a12b3a3b1a1b32a32b12a12b33a33b13a13b4a4b1a1b42a42b12a12b43a43b13a13|a13a23a33a43(b2a2b1a1)(b3a3b1a1)×|1b2a2b1a1b22a22b12a121b3a3b1a1b32a32b12a12b4a4b1a1b42a42b12a12b43a43b13a13|a13a23a33a43(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)×|1b2a2b1a1b22a22b12a121b3a3b1a1b32a32b12a121b4a4b1a1b42a42b12a12|a13a23a33a43(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)×|1b2a2b1a1b22a22b12a120b3a3b2a2b32a32b22a220b4a4b2a2b42a42b22a22|a13a23a33a43(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)1×|b3a3b2a2b32a32b22a22b4a4b2a2b42a42b22a22|a13a23a33a43(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)×|b3a3b2a2b32a32b22a22b4a4b2a2b42a42b22a22|a13a23a33a43(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)(b3a3b2a2)(b4a4b2a2)×|1b3a3b2a21b4a4b2a2|a13a23a33a43(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)(b3a3b2a2)(b4a4b2a2)×|1b3a3b2a20b4a4b3a3|(a1a2a3a4)3(b2a2b1a1)(b3a3b1a1)(b4a4b1a1)(b3a3b2a2)(b4a4b2a2)(b4a4b3a3)(a1a2a3a4)31j<i4(biaibjaj)


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress