题目 08
$$
I=\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} \mathrm{~ d} x = ?
$$
解析 08
尝试用区间再现,但发现走不通:
$$
t=1-x \Rightarrow x=1-t \Rightarrow t \in(1,0) \Rightarrow
$$
$$
I=-\int_{1}^{0} \frac{\ln (2-t)}{1+(1-t)^{2}} \mathrm{~ d} t
$$
由于 $1+x^{2}$ 属于“一个常数加上一个变量的平方”,符合使用 $\tan$ 做三角代换的形式,因此,令:
$$
x=\tan t \Rightarrow \tan t \in(0,1) \Rightarrow t \in\left(0, \frac{\pi}{4}\right) \Rightarrow
$$
$$
1+t^{2}=1+\frac{\sin ^{2} t}{\cos ^{2} t}=\frac{1}{\cos ^{2} t}
$$
$$
(\tan t)^{\prime}=\frac{1}{\cos ^{2} t} \Rightarrow
$$
于是:
$$
I=\int_{0}^{\frac{\pi}{4}} \frac{\ln (1+\tan t)}{\frac{1}{\cos ^{2} t}} \cdot \frac{1}{\cos ^{2} t} \mathrm{~ d} t \Rightarrow
$$
$$
I=\int_{0}^{\frac{\pi}{4}} \ln (1+\tan t) \mathrm{~ d} t \Rightarrow
$$
又有公式:
$$
\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta} \Rightarrow
$$
于是,令:
$$
t=\frac{\pi}{4}-u \Rightarrow u=\frac{\pi}{4}-t \Rightarrow u \in\left(\frac{\pi}{4}, 0\right)
$$
得:
$$
\tan \left(\frac{\pi}{4}-u\right)=\frac{\tan \frac{\pi}{4}-\tan u}{1+\tan \frac{\pi}{4} \cdot \tan u} \Rightarrow
$$
$$
\tan \left(\frac{\pi}{4}-u\right)=\frac{1-\tan u}{1+\tan u} \Rightarrow
$$
于是:
$$
I=-\int_{\frac{\pi}{4}}^{0} \ln \left(1+\frac{1-\tan u}{1+\tan u}\right) \mathrm{~ d} u \Rightarrow
$$
$$ I=\int_{0}^{\frac{\pi}{4}} \ln \left(\frac{1+\tan u}{1+\tan u}+\frac{1-\tan u}{1+\tan u}\right) \mathrm{~ d} u \Rightarrow
$$
$$ I=\int_{0}^{\frac{\pi}{4}} \ln \left(\frac{2}{1+\tan u}\right) \mathrm{~ d} u \Rightarrow
$$
$$ I=\int_{0}^{\frac{\pi}{4}}[\ln 2-\ln (1+\tan u)] \mathrm{~ d} u \Rightarrow
$$
$$ I=\ln 2 \int_{0}^{\frac{\pi}{4}} 1 \mathrm{~ d} u-\int_{0}^{\frac{\pi}{4}} \ln (1+\tan u) \mathrm{~ d} u \Rightarrow
$$
$$ I=\frac{\pi}{4} \ln 2-\int_{0}^{\frac{\pi}{4}} \ln (1+\tan u) \mathrm{~ d} u \Rightarrow
$$
$$ I=\frac{\pi}{4} \ln 2-\int_{0}^{\frac{\pi}{4}} \ln (1+\tan t) \mathrm{~ d} t \Rightarrow
$$
$$
I=\frac{\pi}{4} \ln 2-I \Rightarrow 2 I=\frac{\pi}{4} \ln 2 \Rightarrow
$$
$$
I=\frac{\pi}{8} \ln 2
$$